EVALUATION OF SOLAR POWERED DRIP IRRIGATION SYSTEM SYSTEM

Document Type : Original Article

Authors

1 Agric. Eng., Fac. Agric., Ain Shams Univ.

2 کلية الزراعة - جامعة عين شمس - مصر

3 Nuclear Research Center, Egypt

4 Eng. dept., Fac. Agric., Ain Shams Univ.

Abstract

Egypt’s demand for electricity is growing rapidly and the need to develop alternative power resources is becoming ever more urgent. It is estimated that demand is increasing at a rate of 1,500 to 2,000 MW a year as a result of rapid urbanization and economic growth. Egypt is now struggling to meet its own energy needs. Egypt has been suffering severe power shortages and rolling blackouts over the past years, necessitating the requirement to look to alternative energy options.
Energy demand is increasing fastly so as to meet the requirements of growing population in the world. This study aimed to compare between traditional energy and solar generators in terms of energy consumption and cost effectiveness. Pumping systems were used to operate units of drip irrigation for the crop which was planted, so as to determine the best and least expensive energy consumption under this system.
The required hydraulic experiment and measurements were performed on a private farm at Beni Salama, Giza which lies at latitude 30.32°N, 30.80°E during 2016 and 2017. Measurements were done at two days randomly selected in the months of December and March. This study evaluated the average monthly measurements for December 2016 and March 2017 where onions were grown. Maximum and minimum for Pv system DC power output were 6398 and 5755 W, the maximum and minimum for AC current were 5814 and 5548 W, respectively. Maximum and minimum for hydraulic power were 5911 and 3553 W, respectively. Efficiency of both photovoltaic, inverter, pump and overall system were also calculated for these days. Maximum and minimum for module efficiency were 14% and 13.2%, respectively, and maximum and minimum for inverter efficiency were 95%, 89%, respectively. Maximum and minimum for pump efficiency were 64%, 54%, respectively. While for overall efficiency, they were 8% and 3%, respectively. The results showed that solar pumping system is a reliable system

Keywords


Volume 27, Issue 3
Agric. Economic Nos. 105 …. 112 pp. 1263-1369 Rural Sociology No. 143 pp. 1783-1801 Agric. Biochemistry Nos. 144 … 146 pp. 1803-1841 Agric. Biochemistry Nos. 144 … 146 pp. 1803-1841 Agric. Engineering Nos. 147 … 149 pp. 1843-1880
September 2019
Pages 1853-1870