Biomass Production of Microalgae using Agricultural and Industrial Wastewater

Document Type : Original Article

Authors

1 Agricultural Microbiology Research Department, Soil, Water and Environment Research Institute, Agriculture Research Center, Giza, Egypt

2 Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University, cairo, Egypt.

3 Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University, Cairo, Egypt

Abstract

Growing wastewater microalgae contrib-utes to the elimination of nutrients present in wastewater because they need N and P for the synthesis of proteins, nucleic acid, and phos-pholipids. The most sustainable approach for achieving high biomass and high lipid build-up, along with environmental protection. In the current research, nine microalgae were culti-vated on two variations of wastewater (agricul-tural and industrial dyes) and compared to the synthetic medium. The results indicated that after three weeks of the incubation period, the ability of microalgae to grow in sterilized (syn-thetic medium and wastewater) and gave greater biomass and chlorophyll (a) than in non-sterilized ones. Out of the tested nine mi-croalgae, four microalgae (Anabaena oryzae, Spirulina platensis, Anabaena sp (2) and Nos-toc sp) were selected which gave the highest significant values of dry weight, biomass productivity and chlorophyll (a) content. The selected microalgae showed the highest signif-icant values of the chemical composition, i.e., total carbohydrate, protein and lipid when cul-tivated in agricultural wastewater more than those cultivated in both industrial dye’s wastewater and synthetic broth medium. Among four microalgae, two microalgae of A. oryzae HSSASE6 (KT277789), and S. platen-sis NIES-39 (A00800) were chosen where the chemical composition contents ranged from 1.17 to 1.21-fold and 1.03 to 1.06-fold of car-bohydrate, 1.06 to 1.09-fold and 1.88 to 1.93-fold of protein and 1.41 to 1.52-fold and 1.76 to 1.90-fold of lipid more than those of other microalgae, respectively. The agriculture wastewater was inoculated with a single cul-ture of A. oryzae HSSASE6 (KT277789) or S. platensis NIES-39 (A00800) individually with 10 % of inoculum size, which more preferred than was inoculated with consortia culture. Re-sults also showed that A. oryzae HSSASE6 (KT277789) was more efficient strain for giv-ing biomass and productivity in agricultural wastewater than S. platensis NIES-39 (A00800) (about 28% more).

Keywords