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ABSTRACT

Dietary exposure to a variety of heavy
metals, including Ni, Cd, Cr, Pb, Zn, and Hg,
has been identified as a danger to human
health through fruits and vegetables, contam-
ination of heavy metals is known as a grave
risk to our climate. The study aims to develop
empirical models to predict the concentration
of heavy metals (Ni, Cd, Cr, Pb, Zn, and Hg)
in the leaves of Citrus and Mango crops. The
study was carried out in an observation site in
Giza governorate that is cultivated by varied
herbaceous and tree cover crops. This study
area is suffering from severe pollution caused
by near industrial district. The sample collect-
ed from deferent zones that are divided to six
spatial zones and coded by from zone (2, 3,
4, 5, and 6). The distance between each Zone
10 Km that extends from the north to south
and covers 60% from the Agriculture area in
the Giza governorate. The main inputs of the
generated models were spectroscopic re-
motely sensed data and laboratory analytical
measurements of heavy metals in crop
leaves. ASD (Analytical Spectral Devices)
field spectro-radiometer was used to calculate
hyper-spectral  vegetation indices. Modeled
heavy metal concentrations were tested
against laboratory analysis through two com-
mon statistical tests; the Correlation of deter-
mination (R?) and Root Mean square (RMSE)
error between predicted modeled heavy met-
als. Results shown the correlation coefficient

of the generated models, red and near-
infrared spectral bands demonstrated high
precision and sufficiency for mango and citrus
leaves to predict heavy metals. The models

produced refer to specific regions with the
same conditions. The overall results imply
that hyper-spectral vegetation indices could

be correlated with heavy metal content, while
heavy metal content in plants may be influ-
enced by many others. Remote sensing spec-
troscopy is a possible and promising technol-
ogy to track the environmental pressures on
agricultural vegetation. Additional ground re-
mote sensing experiments are needed to as-
sess the possibility of hyper-spectral reflec-
tance spectroscopy in monitoring the stress of
different types of metals on various plants.

Keywords: Heavy metal, Hyper-spectral Vegeta-
tion Indices, Empirical models, Giza governorate.

INTRODUCTION

Human activities, such as technological growth,
mining, agriculture and traffic, release vast amounts
of heavy metals into the surface and groundwater,
the soil and ultimately into the biosphere. The accu-
mulation of heavy metals in crops and the possibility
of contamination of food via the soil root interface
are a major concern. Heavy metals such as, Cd, Pb,
and Ni is not essential for plant growth, they are
readily absorbed and accumulated by toxic plants
(Mussarat & Bhatti; 2005; Qadir et al 1999; Bhatti
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& Perveen, 2005). Heavy metals are natural ele-
ments that are not biologically degradable or dam-
aged. Trace element to classify the elements that
exist in small quantities in natural biological pro-
cesses associated with the declining environmental
quality resulted in a trace element (Asati et al
2016). For plants and animals, some heavy metals
(Fe, Cu, and Zn) are important (Wintz et al 2002).
The presence varies in the medium and metals like
Cu, Zn, Fe, Mn, Mo, Ni and Co are important micro-
nutrients (Reeves et al 2000). Its absorption over
plant requirements contributes to toxic effects
(Monnis et al 2000). On arable plants (Misra et al
1991) In the Nile delta, soil contamination by heavy
metals is considered to be a major environmental
issue. Most of which have toxic effects on plants and
microorganisms in soil when allowable concentra-
tions are exceeded (Mohamed et al 2016).

Multi- and hyperspectral images were checked
for low-cost and rapid determination and quantita-
tive analysis of soil properties essential to agricul-
ture - water, nutrients, and organic matter content
(Bonifazi et al 2004). Remote sensing presents rich
spectral and typically spatially continuous infor-
mation that can be used to determine more specific
spectral properties of soil properties and mineral-
ogy, which can be used to map and track pollution
of soil in turn. Based on the spectral response of the
sample, reflectance spectroscopy is also relatively
lower in cost and faster than conventional wet
chemical measurements.

Hyper-spectral spectrum imaging technique de-
velops multiple line images across the field of light
intensity, and this technology was used to detect ap-
ple firmness and soluble solids content (SSC- Lu,
2004 & Mendoza et al 2011). However, spectral dif-
fusion technology may be essentially inferior for
SSC calculation as its sensing design aims to in-
crease the scattering properties, leading to better
firmness prediction but not in soluble solids content
(Mendoza et al 2011). Hyper-spectral reflectance
display technology, on the other hand, is another
method of detecting the hyper-spectral imaging sys-
tem, typically used for pear deterrence firmness and
soluble solids content (Fan et al 2015), testing ma-
terial properties, soluble solids content, and blue-
berries firmness (Hu et al 2015 & Leiva et al 2013),
forecasting soluble solids content and pH of straw-
berries (El-Masry et al 2007) and grapes (Baiano
et al 2012). The current study aims to introduce a
remotely sensed method to predict heavy metal
contamination through statistical easily operated
models.

MATERIALS AND METHODS
1. Study area

The area is located on the South of Giza Gover-
norate on both sides of River Nile. It included differ-
ent administrative areas in Al-Saff and Atfih. The
boundary of the study area extends from north to
south for a distance exceeding one hundred kilome-
ters. The study area is close to the huge industrial
community between (29°47'55.22" to 29°13'11.82"
North) and from (31° 6'32.00", 31°27'34.24" East)
with a total area of (2288.76) KmZ. The depth of the
study area is 64 km from Helwan industrial area
while the width is 36 km. That shown in Fig. (1).

2. Field and Laboratory measurements

Ninety-nine (99) leaves of mango and forty two
(42) citrus sample leaves from six (6) spatial zones
were collected for spectroscopic and laboratory
measurements. The spatial zones and examples for
field measurements are shown in Fig. (2). Spectral
measurements for the samples were carried out us-
ing the ASD field spectroradiometer. Field observa-
tions and collection of the different samples were
carried out in two days (23 and 24 March 2018).

Plant leaves were collected and used for labor-
atory analytical analysis for heavy metal using wet
digestion procedure and the metal concentration in
the digest was determined using atomic absorption
spectroscopy.

2.1. ASD spectroradiometer

ASD (Field spectroradiometer), was used to col-
lect spectra over the full range of the spectrum (vis-
ible and near-infrared) regions from (350 nm - 2500
nm) for each trees sample at (1,4nm - 2nm) intervals
with a spectral wavelength of (3nm: 10 nm). The ASD
spectroradiometer measures the reflectance, trans-
mission, radiance, and irradiance of an object. The
recorded data are usually affected by the surround-
ing factors, such as sources of illumination, scan-
ning time, atmospheric conditions, and field-of-view
of the device. Spectral data were recorded concern-
ing an external white reference panel. Then, three
spectra for each sample were recorded, and the av-
erage values for the three spectral readings were
calculated. Thus, one value was obtained to ex-
press the spectral characteristics of each measured
leave.

AUJASCI, Arab Univ. J. Agric. Sci., 28(2), 2020



Assessment of Spectroscopic and Morphological Properties of some Fruit
Crops under the Influence of Pollution with Heavy Metals Using Remote
Sensing Techniques

B

W0 e e

31°00°F JraporE 200"E
. N
Giza governorate o
‘ﬁb_k
_Osim
= =
Study Area z ¢
P 5 o =
Study AreaZone || = 6 Qtober “AbuNomros  — 5
Admin Markaz B':I‘-“';"'k." Industrial Area
adrasheen
. A May 15
Industrial Area ' :
=
Capital Cities
Airport =
River Nile
7 ;
; ¢
/ &
Giza governorate e
H
H
H
.- |
/ Y, v
/ - s
o B! H
o 85 170 340 KM
—————
J00VE RIE T 32°0'0"E

FVOE WIVEE 0ONE WOCE ITIE 60E
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Fig. 2. Location map for plant samples
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2.1.1 Vegetation Indices

Hyper-spectral indices were computed from Al-
gebraic ratios of different types around red (R) and
near-infrared bands: (NIR) Normalized Vegetation
Difference Index (NDVI) (Rouse et al 1973) and
Soil Adjusted Vegetation Index (SAVI), which were
calculated as follows:

NDVI = (Rsoo - Re70) / (Rsoo - Re70) ... Equation (1)

Where: pr and pNIR respectively are spectral re-
flections of R and NIR bands.

SAVI = (1+L) (Rgoo'Rsm) / (Raoo- Re70t L) Equation (2)

Where: (pr) and (pNIR) spectral reflection from the
spectro-scopic measurements, including both of (R)
and (NIR) band, and (L) is an ideal adjustment fac-
tor. (Huete, 1988) defined the ideal adaptive algo-
rithm L = (0.25), (0.5), or (1.0) to be considered for
medium, moderate or low field vegetation density,
respectively. He hinted at (SAVI) L = (0.5). Accord-
ing to NDVI, the effect of soil differences in green
vegetation is effectively minimized.

3. Model calibration and validation

Randomly selected 70% of the collected sam-
ples were used for modeling while 30% were used
for validation for spectroscopic and laboratory
measurements. The process of spectral modeling
was performed using a simple linear regression
model and the models (one for each plant parame-
ter) were calibrated using the coefficient of determi-
nation (R?), and root means square error (RMSE).

4. RESULTS AND DISCUSSION

Different simple regression mathematical mod-
els were generated using contamination of heavy
metals as a variable dependent and each of, red
spectral band, NIR spectral band, and two vegeta-
tion indices (NDVI and SAVI) as independent ones.
Table (1) shows the generated models to estimate
heavy metals contamination using remote sensing
factors for Mango samples and the correlation coef-
ficient (R?) for each generated model.

Table 1. Simple regression models for heavy metals
and spectral data for Mango samples

Elements Spectral R? | Simple regression Model
band
R 0.836 -8.449+377.010*R
Pb IR 0.943 -251.465+561.638*IR
NDVI | 0.92 | -57.310+110.193*NDVIA
SAVI ]0.903| -70.271+157.756*SAVI
R 0.87 3.587+144.68*R
cr IR 0.94 -88.973+210.084*NIR
NDVI |0.875| -14.904+41.947*NDVI
SAVI 0.88 -18.759+58.299*SAVI
R 0.892 -21.487+620.669*R
cd IR 0.9 -399.414+879.5*IR
NDVI |0.716| -86.773+161.595*NDVI
SAVI [0.754| -104.832+229.79*SAVI
R 0.96 -15.733+406.025*R
- IR 0.942 -256.715+563*IR
NDVI |0.711| -55.089+101.285*NDVI
SAVI ]0.751 -66.530+144.23SAVI
R 0.931 -16.377+518.999*R
Ni IR 0.947 -331.703+734.374*IR
NDVI |0.719| -68.996+132.496*NDVI
SAVI 0.77 | -85.101+190.534*SAVI
R 0.957 -45.512+1134.572*R
Hg IR 0.976 -726.176+1587.91*IR
NDVI | 0.75 | -162.286+291.936*NDVI
SAVI [0.781| -193.27+412.503*SAVI

There is a distinctive relationship between
heavy metal contaminations like with (red) and
(NIR) band, (NDVI) and (SAVI) according to regres-
sion equations. These models were validated using
two statistical analyzes involving regression analy-
sis between actual and expected contamination. For
each model, (R?) values as well as the RMSE are
presented in Table (2). The models are found to be
sufficient for forecasting heavy metals as they rec-
orded higher than (0.8) of R2. Such analysis almost
agreed with the result of the analysis of the RMSE
except for Hg that showed relatively high RMSE of
(12.2) with NDVI and (11.2) with SAVI models as
shown in Table (2).
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Table 2. Coefficient determined by (R?) and Root
Mean Square Error (RMSE) of real and expected
heavy metals of various spectral bands obtained
from ASD spectroradiometers and Mango vegeta-
tion indices.

Elements R R2 RMSE
R 0.85 2.9
Pb IR 0.99 1.8
NDVI 0.834 3.6
SAVI 0.916 2.7
R 0.86 1.1
Cr IR 0.94 0.79
NDVI 0.876 1.19
SAVI 0.88 1.16
R 0.934 3.3
cd IR 0.919 3.9
NDVI 0.688 7.4
SAVI 0.742 6.9
R 0.96 15
7n IR 0.943 2.1
NDVI 0.699 4.5
SAVI 0.755 4.2
R 0.953 2.3
NI IR 0.950 2.5
NDVI 0.71 5.9
SAVI 0.77 5.3
R 0.962 4.6
IR 0.95 55
Hg
NDVI 0.738 12.2
SAVI 0.77 11.2

For Citrus samples, the generated models to es-
timate contamination of heavy metals for Citrus
samples, and the correlation coefficient for each
model are shown in Table (3). It was found that
there is a distinct correlation between contamination
of heavy metals with red band, NIR band, NDVI, and
SAVI. The generated model to estimate Pb element
showed relatively high accuracy with Red model
and NIR model with (R?) 0.83 and 0.82. Atthe same
time, NDVI and SAVI based models showed rela-
tively low R? (0.43) and (0.58). Almost the same

trend was found with Cr, Cd, Zn and Hg when Ni
element showed relatively low accuracy for red
model.

These models were validated using two statisti-
cal analyzes including regression analysis between
real and expected performance for each model and
R? values, as well as the RMSE as shown in Table
(4). It is observed that Models were adequate for
heavy metal prediction as they recorded higher than
0.8 of R? for each element and model. Such analysis
was almost agreed with the results of the RMSE
analysis except for Cd that showed Higher RMSE
for 5.4 NDVI models as shown in Table (4).

Table 3. Simple regression models for heavy metals
and spectral data for Citrus

Elements | Spectral R? Simple regression
band Model
R 0.835 6.602+233.88*R
Pb IR 0.821 -115.32+269.3IR
NDVI 0.43 | -22.808+58.399NDVI
SAVI 0.58 | -32.450+86.329*SAVI
R 0.78 6.707+133.062*R
Cr IR 0.757| -61.793+151.560*IR
NDVI 0.34 | -7.788+30.499*NDVI
SAVI 0.49 | -13.853+46.62*SAVI
R 0.67 -1.675+588.26*R
cd IR 0.89 -364.419+784.9*IR
NDVI 0.656(-124.694+206.619*NDVI
SAVI 0.74 | -137.655+273.74*SAVI
R 0.83 -5.010+319.093*R
7N IR 0.88 179.07+382.228*IR
NDVI 0.4 | -43.346+77.497*NDVI
SAVI 0.56 | -57.326+116.336*SAVI
R 0.569 17.589+210.624*R
Ni IR 0.835| -120.206+296.209*IR
NDVI 0.68 | -31.169+79.717*NDVI
SAVI 0.767| -37.927+108.244*SAVI
R 0.705 10.392+468.7*R
Hg IR 0.908| -274.448+617.37*IR
NDVI 0.55 | -70.628+143.929*NDVI
SAVI 0.65 -86.145+200.4*SAVI
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Table 4. Coefficient of determination (R?) and Root
Mean Square Error (RMSE) of actual and predicted
heavy metals of various spectral bands obtained for
Citrus from the ASD spectroradiometer and vegeta-
tion indices.

Elements R R? RMSE

R 0.8 2.55

IR 0.8 2.11

Pb NDVI 0.4 2.12
SAVI 0.7 1.7

R 0.7 15

Cr IR 0.8 1.2
NDVI 0.4 1.1

SAVI 0.6 1.05

R 0.8 6.5

IR 0.9 4.7

cd NDVI 0.7 5.2
SAVI 0.8 3.5

R 0.8 2.8

7n IR 0.9 1.7
NDVI 0.5 2.7

SAVI 0.7 2.15

R 0.8 2.3

NI IR 0.8 2.5
NDVI 0.7 2.06

SAVI 0.8 1.5

R 0.7 5.6

Hg IR 0.9 3.09
NDVI 0.6 4.3

SAVI 0.8 3.1

5. CONCLUSION

In the current study, statistical models were gen-
erated to estimate heavy metal contamination of
Mango and Citrus leaf samples. The developed
models used remote sensing factors as estimators
in the form of spectral reflectance or vegetation in-
dices. The validation analysis could be concluded
for the generated models; using spectral bands
(NIR and Red) and VIs (NDVI and SAVI) are ade-
quate to predict the accumulation of heavy metals
in Mango. Red and NIR showed higher accuracy to
predict citrus heavy metals more than VIs for Pb, Cr,
Cd, Zn, and Hg Under normal ambient and common
agricultural practices. ASD spectroradiometer tech-
nigue can be a useful method to determine the
heavy metals content of citrus and mango. All mod-
els produced are empirical models limited to the en-
vironment and applicable under similar conditions.

REFERENCES

Asati A. and Pichhode M. and Nikhil K. 2016. Ef-
fect of Heavy Metals on Plants: An Overview.
Int. J. of Application or Innovation in Engi-
neering & Management 5(3), 2319-4847.

Baiano A., Terracone C., Peri G. and Romaniello
R. 2012. Application of hyperspectral imaging
for prediction of physico-chemical and sensory
characteristics of table grapes. Comput. Elec-
tron. Agric. 87, 142-151.

Bhatti A.U. and Perveen S. 2005. Heavy metals
hazards in agriculture in NWFP. Proceedings
of the First International Conference on En-
vironmentally Sustainable Development. De-
partment of Environmental Sci., COMSATS
Inst. Info. Tech. Abbottabad, Pakistan. pp.
1513-1518.

Bonifazi G., Menesatti P. and Millozza M. 2004.
Multiand hyperspectral digital imaging based
techniques for agricultural soil characterization,
in Proceedings of the International Society
for Optical Engineering ‘“Nondestructive
Sensing for Food Safety, Quality, and Natural
Resources (International Society for Optical
Engineering, Bellingham, WA, and Vol. 5587,
pp. 1-9.

ElMasry G., Wang N., ElSayed A. and Ngadi M.
2007. Hyperspectral imaging for nondestructive
determination of some quality attributes for
strawberry. J. Food Eng. 81, 98-107.

Fan S., Huang W., Guo Z., Zhang B. and Zhao C.
2015. Prediction of soluble solids content and
firmness of pears using hyperspectral reflec-
tance imaging. Food Anal. Methods 8, 1936-
1946.

Hu M.H., Dong Q.L., Liu B.L., Opara U.L. and
Chen L. 2015. Estimating blueberry mechanical
properties based on random frog selected hy-
perspectral data. Postharvest Biol. Technol.
106, 1-10.

Huete A.R. 1988. A soil vegetation adjusted index
(SAVI). Remote Sens. Environ, 25, 295-309.

Leiva-Valenzuela Lu, R. and Aguilera J.M. 2013.
Prediction of firmness and soluble solids content
of blueberries using hyperspectral reflectance
imaging. J. Food Eng. 115, 91-98.

Lu R. 2004. Multispectral imaging for predicting
firmness and soluble solids content of apple
fruit. Postharvest Biol. Technol. 31, 147-157.

Mendoza F., Lu R., Ariana D., Cen H. and Bailey
B. 2011. Integrated spectral and image analysis
of hyperspectral scattering data for prediction of

AUJASCI, Arab Univ. J. Agric. Sci., 28(2), 2020



Assessment of Spectroscopic and Morphological Properties of some Fruit 527
Crops under the Influence of Pollution with Heavy Metals Using Remote
Sensing Techniques

apple fruit firmness and soluble solids content.
Postharvest Biol. Technol. 62, 149-160.

Misra S.G. and Mani D. 1991. Heavy metals pollu-
tant in: Soil Pollution. Ashish Publishing House,
New Delhi, 60 p.

Mohamed E.S., Ali A.M., El Shirbeny M.A., Afaf
A. Abd El Razek and Yu Savin I. 2016. Near
Infrared Spectroscopy Techniques for Soil Con-
tamination Assessment in the Nile Delta.” Eura-
sian Soil Sci., 49(6), 632-39.

Monni S., Salemma M. and Millar N. 2000. The tol-
erance of Empetrum nigrum to copper and
nickel. Environ Pollut 109, 221-229.

Mussarat M. and Bhatti A.U. 2005. Heavy metal
contents in fodder crops growing in the vicinity
of Peshawar City. Soil and Environ, 24(1), 58-
62.

Qadir M.A., Mitra A., Gupta S.K. and Murtaza G.
1999. Irrigation with city effluents for growing
vegetables: A silent epidemic of metal poison-
ing. Proceeding of Pakistan Academy of Sci.,
36, 217-222.

Reeves R.D. and Baker A.J.M. 2000. Metal-accu-
mulating plants. In: Raskin I, Ensley BD (eds.)
Phytoremediation of toxic metals: using plants to
clean up the environment. Wiley, New York,
USA, pp. 193-229.

Rouse J.W., Haas R.H., Schell J.A., Deering D.W.
and Harlan J.C. 1974. Monitoring the vernal ad-
vancements and retrogradation of natural Vege-
tation. In: NASA/GSFC, Final Report, Green
belt, MD, USA pp. 1-137.

Wintz H., Fox T. and Vulpe C. 2002. Responses of
plants to iron, zinc and copper deficiencies.
Biochem Soc. Trans 30, 766-768.

AUJASCI, Arab Univ. J. Agric. Sci., 28(2), 2020



raa B AN (uad e daaly el )l aglell L sl cilaalad) slad) Alaa
2020 528-521 ¢(2)3 ¢(28)4lxs
Website: http://ajs.journals.ekb.eq

A4Sl Jualaa (aral daaglsh; gally dgSug i) Gailadl) aoi
2l e jladia) aladiuly ALE jualially gl 80 s

[37]

= Zyaagd w el - 2 dadlae saallae alii - T gl Gl Sl
1l aaln) Caal dana
e = 5alal = saal) Aajll — cloadll asley daad) (e ladindU Al Al —1

raa T B‘)ﬁsm\— 11241 b—\.ﬁa&ﬂh_ 68 A:l)-id_gmm_ Muﬂc@\;_fmb‘)ﬂw_uﬁm‘euﬁ_z

*Corresponding author: amanysearch@gmail.com

Received 3 May, 2020

Accepted 24 August, 2020

bl bl 3dial)l Gluldll (e daaid)
& cdaaladl @byl AR oleall duynad)
Beal) Akl eldy) Cubll ubie aladi)
Sl eladll Shdge Glaad (gl bl
Dla e @) Galeadl 385 jlas) & L (gpadl)
Aderal) cOblanll Gliby DA e SlaaV z3saill
il ikl A @by DA ey Aoyl
Jalaa 88 il cajedaly cdalaall clulall
Aady elpeall Lpdall @il DA ey dala )
Ss sl 8 36lS, dlle 380 culS o peall ias
bl s . pailally llsall (3l A AL ¢palaall
Aadall llall 4Ll iyl Hlasind o ale (<5
AL palaall e sinall S (K5 Aatiye
waalls ply o8 AL jealialls LA (g5 o
G Aals (B L) Say 1 (@AY @hisal e
aluball aladiu) Aol ead plaall e Mje
ol s ) Mea) e (8 dial) DLl

) ALE) paladll

Aol gl ALED Goleal :dsalidal clalsy)
c‘.‘;b.a;‘).” ‘_;\:\);ﬂ\ CJJA.\S\ ccablay¥l saaxtia calilull
5ol il

a4l

poAl = Gala)ll) ALEN cpalaall Sohill <8

Glo bhd (Gl - il - el - J<al -
Jie e Gl 25 Glad¥) Aaaas Aalall 2aal
AS)5alls s padll DY) PDIA (o aliall o2
gasai gk ) Al Cing LAl Gl b
Adl oledd 3K gl et Jlaal
— il — sl = Sl — ag K0 — aliajl)
b A te dabd) dualadl Ghsl (B0
dailae Al Cusals . sailally mllgall Jseana
el deudl ula o (Ailadll agia) Bl
Jualadl 6 90 (e dilaiall olaas Lob Juill gl
e Ayl Adlaie s LeS L3S Jualae s Adeal)
Ohsls Casing e licall Aakidl e pal Al &gl
o Aanlil Adiall il glally ()l slae sl SIS
il B ) Akl w235 < dsedl) Cilbles
A s by oS 10 Ailue dl<e Lalia
duﬁd\wmgﬂ\j.(6}c5c4c3c2)é&.’:
el (abY) dalus e 260 ity cagiall )
2 sall Al DR il Bl Abila 8
Aahall bl b Al b aadied) Sl

e Joadlae a) rausad
(3l ol


http://ajs.journals.ekb.eg/
mailto:amanysearch@gmail.com

	EFFECT OF GIBBERELLIC ACID (GA3) ON ENHANCING FLOWERING AND FRUIT SETTING IN SELECTED
	EFFECT OF GIBBERELLIC ACID (GA3) ON ENHANCING FLOWERING AND FRUIT SETTING IN SELECTED

