REMOVAL OF ALIZARIN RED S FROM AQUEOUS SOLUTION USING SODIUM BENTONITE

Eman A. El-Menofy, Omnia I. Ali and Kandil A.H.T.
Chemistry Dept., Fac. of Sci., Helwan Univ., Cairo, Egypt

Keywords: Removal, Alizarin red S (ARS), Bentonite

ABSTRACT
In this work, sodium bentonite (Bn) was used for removal of alizarin red S (ARS) from aqueous solution using batch technique. Fourier transform infrared spectroscopy and X-ray diffraction were used to characterize sodium bentonite. Different parameters that would affect ARS dye removal such as initial pH, contact time, initial ARS dye concentration, bentonite dose, and temperature were explored. The realized data from kinetic studies demonstrated the high fitness of pseudo-second-order kinetic model for better interpretation of the experimental data. The adsorption isotherms studies showed that Freundlich isotherm had a high correlation coefficient among the studied isotherm models. Thermodynamic studies proposed that ARS adsorption onto Bn was spontaneous in nature at the lower temperatures and exothermic.

1. INTRODUCTION
Dyes usually accumulate from the effluents discharged by various industries such as textiles, paper, cosmetics, rubber, and plastics [1, 2]. Dyes are poisonous to organisms and carcinogenic. Manufacturing wastewater having such dyes discharged into receiving water has become a serious environmental problem. One of the major environmental problems is the color removal from textile wastewater because of the difficulty of treating such water by traditional treatment methods [3]. ARS is used for coloring textile such as cotton, wool, and woven fabrics. ARS is an anionic anthraquinone dye and is highly durable and difficult to degrade because of its complex structure. In addition, it is known to possess carcinogenic properties and causes environmental problems [4].

Numerous techniques, such as chemical oxidation, flocculation, precipitation, membrane filtration, biodegradation and electrochemical techniques have been employed for dyes removal. The previously mentioned procedures have several drawbacks such as high cost, generation of secondary contaminants and low removal effectiveness. Adsorption has been shown high efficiency and be an economical process for the dyes removal from wastewater [5]. Currently activated carbons [6, 7] and resins [8] are commonly applied for the removal of dyes; however they are still expensive for practical application. Hence, searching for natural-occurring materials and low cost adsorbent materials for dyes removal seems to be more significant. Bn clay is a kind of aluminosilicate clay and is mostly composed of montmorillonite that is characterized by one aluminum octahedral layer placed between two silicon tetrahedral layers. This clay is preferred due to its chemical and mechanical stability, high surface area, layered structure, low cost, abundant in most soils and high cation exchange capacity. Bn has a diversity of uses since it becomes a colloidal when mixed with water, swelling in water, and high plasticity. From its developed application is used as a dispersive agent. Bn clay also used as an industrial raw material in catalytic, rheological and sorptive applications. Moreover, it is used in some applications in industry, such as in drilling fluids, paper, cement, pharmaceutical field, dyes and ceramics. Bn has a layer structure, which gives the clay a good ion exchange capacity that is mostly responsible for relatively high viscosity. Bn has been extensively used in the extraction, and separation of a variety of inorganic and organic substances [9-16].

The purpose of this search was to evaluate the potential of Bn to remove ARS from aqueous solution and to determine the several factors that affect on its removal using Bn, such as initial pH, contact...
time, initial ARS dye concentration, bentonite mass, and temperature. As well as the kinetics, isotherms, and thermodynamic parameters of ARS removal from aqueous solution are investigated.

2. Experimental

2.1. Materials

Bentonite clay, sodium form was purchased from Thermofisher, Germany. Alizarin red S was purchased from Riedel-de H äen AG, Germany. Chemical structure of the dye is shown in Fig. 1. Sodium hydroxide and hydrochloric acid (El Nasr Pharmaceutical Chemicals Co.) were used for initial pH adjustment. A stock solution containing 500 mg L$^{-1}$ ARS was prepared by dissolving the required amount in distilled water. The desired concentrations of solutions in further experiments were obtained by successive dilutions. Distilled water is used throughout the work. All other chemicals and reagents used in this work were of analytical grade.

Fig. 1. Chemical structure of ARS

2.2. Instrumentation

The spectrophotometric measurements are performed using a UV-Vis double-beam spectrophotometer (V-630 Jasco, Japan). A Jenco 6173 pH-meter is used for pH measurements. Water bath shaker is used for shaking during experiments. FTIR spectra are recorded on a FTIR spectrometer (FT-IR-6100 Jasco, Japan), using KBr pellets in the range of 4000–400 cm$^{-1}$ at room temperature with spectral resolution 4 cm$^{-1}$. X-ray diffraction analysis is carried out using an X-ray diffractometer (Brucker D8 Advanced, Germany) with Cu Kα radiation ($\lambda = 0.15406$ nm) in the 2θ range of 2° to 70°.

2.3. Adsorption studies

Adsorption experiments were carried out using batch technique. To study the effect of pH on the adsorption process, 0.05 g of the adsorbent is mixed with 25 mL of ARS solution with initial concentration of 100 mg L$^{-1}$. The initial pH is adjusted in the range of 2–10 using drops of 0.1 M HCl and 0.1 M NaOH. For adsorption kinetics studies, 25 mL of the ARS solution with initial concentration of 100 mg L$^{-1}$ at pH 4 is added to 0.05 g of adsorbent. In the adsorption isotherm studies, 0.05 g of the adsorbent is added to 25 mL of the ARS solutions with an initial concentration of 25, 50, 100, 200 and 400 mg L$^{-1}$ at the pH 4. In the thermodynamic studies, 0.05 g of the adsorbent is added to 25 mL of ARS solution with initial concentration 100 mg L$^{-1}$ at different temperatures. After equilibrium, the mixtures are centrifuged and the concentration of the ARS is determined spectrophotometrically using UV-Vis spectrophotometer at a wavelength of 420 nm. The percentage of adsorption ($%E$) and q_e (mg g$^{-1}$) are calculated as follows:

\[
\% = \frac{(C_i - C_e)}{C_i} \times 100
\]

\[
q_e = \frac{(C_i - C_e)V}{m}
\]

where: C_i is the initial dye concentration (mg L$^{-1}$), C_e is the equilibrium dye concentration (mg L$^{-1}$), V is the volume of ARS used (L), and m is the mass of adsorbent used (g).

3. RESULTS AND DISCUSSION

3.1. Characterization

3.1.1. Fourier Transform Infrared (FTIR) Spectroscopy

FTIR spectra of Bn are recorded in the range of 4000 - 400 cm$^{-1}$. The FTIR spectra of Bn are illustrated in Fig. 2. Peaks that observed at 3446.2 and 3622 cm$^{-1}$ are due to the vibrations of inner H$_2$O and hydroxyl groups of Bn, respectively. The two peaks at 3237 and 1645 cm$^{-1}$ are resulted from H$_2$O bending and that appeared at 521.7 cm$^{-1}$ and 462.8 cm$^{-1}$ are attributed to Al-O-Si bending and Si- O -Si bending, respectively. The peak at 622.895 cm$^{-1}$ is related to the Al-O and Si-O
out-of-plane vibration. In addition, the peak appeared at 922.8 cm\(^{-1}\) caused from Al-OH-Al bending [17].

3.1.2. X-ray diffraction (XRD)

The XRD obtained for Bn is shown in Fig. 3. The pattern that found for Bn showed the presence of montmorillonite (7.07° and 19.78°) as a majority phase [18].

3.2. Adsorption studies

3.2.1. Effect of initial pH

The effect of initial pH on the removal of ARS using Bn from 2–10 is studied and the results are shown in Fig. 4. The maximum removal of ARS using Bn is achieved at pH 4, then the removal percentage decreased as pH increased. At pH less than \(pK_a\) of ARS, there is an electrostatic attraction between the cationic form of ARS molecules and the negatively charged surface of Bn. As the pH increase; there is an electrostatic repulsion between the anionic form of ARS molecules and Bn resulting in decreasing the removal percentage of ARS.

3.2.2. Effect of contact time

The contact time is a significant parameter that used to optimize the processing period. The removal of ARS using Bn is investigated as a function of contact time and it is done in the range from 5 to 120 min. From the results that are shown in Fig. 5, it can be concluded that 60 min is the optimum equilibrium contact time for ARS removal by Bn.
increase with increasing adsorbent dose from 0.01 to 0.2 g. The increase in the adsorption efficiency of ARS can be attributed to a large total surface area of Bn and the accessibility of large number of adsorption sites [19, 20]. At Bn dosage that is higher than 0.05 g, the concentration of the ARS on Bn surface is in equilibrium with the ARS concentration in solution [21].

3.2.4. Effect of ARS initial concentration

The effect of ARS initial concentration on its removal using Bn is studied and the results are shown in Fig. 7. The Bn and dye solution of different initial concentrations of 10 to 400 mg L\(^{-1}\) are contacted for 60 min at pH 4 with an adsorbent dose of 0.05g. The adsorption capacity of ARS increased from 4.25 to 122.15 mg g\(^{-1}\) by increasing the initial ARS dye concentration from 10 to 400 mg L\(^{-1}\). This indicates that the ARS adsorption on Bn is concentration dependent [22].

3.2.5. Effect of temperature

The study of the adsorption process of ARS onto Bn at different temperatures (30, 40, 50, and 60 °C) at pH 4 using 0.05 g of Bn for 60 min was revealed in Fig. 8. The removal percentage decreased as the temperature increased. The obtained results indicated the exothermic nature of ARS adsorption onto Bn.

3.3. Isotherm Studies

Langmuir [23] and Freundlich [24] models are used to analyze the equilibrium isotherm adsorption data:

Langmuir isotherm

Langmuir isotherm model presume a monolayer for adsorption onto the surface of adsorbent with a definite amount of identical sites. Once an active site is occupied, no additional adsorption can occur at that site and Langmuir model is given by:

\[
\frac{C}{q_e} = \frac{1}{K_L q_{\text{max}}} + \frac{C}{q_{\text{max}}}
\]

(3)

Where: \(C\) and \(q_e\) are the equilibrium concentration of ARS(mg L\(^{-1}\)), and the quantity of ARS adsorbed per unit mass of Bn at equilibrium concentration (mg g\(^{-1}\)), respectively. \(q_{\text{max}}\) is the full monolayer adsorption (mg g\(^{-1}\)) and \(K_L\) is the Langmuir constant related to the affinity of Bn binding sites (L mg\(^{-1}\)) and the these parameters values are registered in Table 1.
Freundlich model

Freundlich model is based on a multilayer for adsorption on a heterogeneous surface and is set by:

\[\ln q_e = \frac{1}{n} \ln C_e + \ln K_F \] \hspace{1cm} (4)

Where: \(n \) and \(K_F \) are Freundlich constants indicating the intensity and adsorption capacity, respectively. The values of \(n \) and \(K_F \) are calculated from the slope and intercept of the plot of \(\ln q_e \) versus \(\ln C_e \) and they are presented in Table 1. From the magnitudes of the correlation coefficients values for the two models, the Freundlich isotherm model has better \(R^2 \) value than the other isotherm model (Table 1). This recommends that the ARS adsorption onto Bn is a physical process.

![Freundlich isotherm](image)

Fig. 9. Freundlich isotherm of adsorption of ARS onto Bn.

Table 1. The parameters of Langmuir and Freundlich isotherm models for the adsorption of ARS onto Bn.

<table>
<thead>
<tr>
<th>Langmuir isotherm</th>
<th>Freundlich isotherm</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K_L) (mgg(^{-1}))</td>
<td>(K_F) (mgg(^{-1})Lmg(^{-1}))</td>
</tr>
<tr>
<td>0.01</td>
<td>3.36</td>
</tr>
</tbody>
</table>

3.4. Kinetics Study

The mechanism of the ARS adsorption onto Bn is explained using two kinetic models: Lagergren pseudo-first-order [25] and pseudo-second-order [26]. The Lagergren pseudo-first-order model equation:

\[\ln(q_e - q_t) = \ln q_e - k_1 t \] \hspace{1cm} (5)

Pseudo-second-order kinetic equation:

\[\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{t}{q_e} \] \hspace{1cm} (6)

Where: \(q_t \) and \(q_e \) are the quantities of ARS that are adsorbed per unit mass of Bn (mg g\(^{-1}\)) at time \(t \) (min) and that adsorbed at equilibrium, respectively. The values of rate constants \((k_1, k_2) \) represent pseudo-first-order constant (min\(^{-1}\)), and pseudo-second-order rate constant (g mg\(^{-1}\) min). Figure 10 represents the plot of pseudo-second-order, while the data of \(k_1, k_2 \) and \(R^2 \) are demonstrated in Table 2. The ARS adsorption onto Bn fitted well with the pseudo-second-order kinetic model and this is indicated by the values of \(R^2 \) as shown in Table 2.

Table 2. Parameters of the kinetics models for ARS adsorption onto Bn.

<table>
<thead>
<tr>
<th>Kinetic model</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudo–first–order</td>
<td>(q_e) (mg g(^{-1}))</td>
<td>34.81</td>
</tr>
<tr>
<td></td>
<td>(k_1) (h(^{-1}))</td>
<td>0.0815</td>
</tr>
<tr>
<td></td>
<td>(R^2)</td>
<td>0.907</td>
</tr>
<tr>
<td>Pseudo–second–order</td>
<td>(q_e) (mg g(^{-1}))</td>
<td>42.55</td>
</tr>
<tr>
<td></td>
<td>(k_2) (h(^{-1}))</td>
<td>0.000961</td>
</tr>
<tr>
<td></td>
<td>(R^2)</td>
<td>0.9526</td>
</tr>
</tbody>
</table>

![Kinetics Study](image)

Fig. 10. Pseudo–second–order rate plot for the adsorption of ARS onto Bn.
3.5. Thermodynamic Parameters

Van't Hoff equations [27] are used to calculate the thermodynamic parameters, such as enthalpy (ΔH°), entropy (ΔS°) changes and Gibbs's free energy change (ΔG°), and the results are given in Table 3. The values of ΔS° and ΔH° are determined from the intercept and the slope of the plots (Fig. 11) of $\ln k_d$ versus $1/T$.

\[
k_d = \frac{q_e}{C_v}
\]

\[
\ln k_d = \frac{\Delta S^\circ}{R} - \frac{\Delta H^\circ}{RT}
\]

\[
\Delta G^\circ = \Delta H^\circ - T\Delta S^\circ
\]

Where: k_d is the distribution coefficient, q_e is the equilibrium concentration of ARS on Bn (mg L$^{-1}$), R is gas constant (J mol$^{-1}$ K$^{-1}$) and T is the temperature (K). The negative values of both ΔH° and ΔS° showed that the nature of ARS adsorption is exothermic, and adsorption is accompanying with entropy decrease due to the limit of the mobility of ARS that resulted from binding to the Bn surface [28]. The values of ΔG° are found to be negative at the lower temperature and positive at the higher temperatures, which indicated that the non-spontaneous nature of ARS adsorption onto Bn at the higher temperatures [29]. The observed increase in ΔG° value with temperature suggested that lowering temperature enhances the process of adsorption of ARS onto Bn.

Table 3. Thermodynamic parameters for the adsorption of ARS onto Bn.

<table>
<thead>
<tr>
<th>Temperature, K</th>
<th>ΔG°, KJ mol$^{-1}$</th>
<th>ΔH°, KJ mol$^{-1}$</th>
<th>ΔS°, J mol$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>303</td>
<td>-1.44862</td>
<td>-63.38676</td>
<td>-204.419</td>
</tr>
<tr>
<td>313</td>
<td>0.59554</td>
<td></td>
<td></td>
</tr>
<tr>
<td>323</td>
<td>2.639703</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333</td>
<td>4.683866</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 11. Plot of $\ln k_d$ versus $1/T$ for ARS adsorption onto Bn at different temperatures.

REFERENCES

Boyacıa, E., Ahmet, E., Glua, E. and Shahwan, T. 2010. Sorption of As(V) from waters using chitosan and chitosan-immobilized sodium silicate prior to atomic spectrometric determination, Talanta 80, 1452–1460.

Leite, I.F., Raposo, C.M.O. and Silva, S.M.L. 2008. Structural characterization of Brazilian and imported bentonitic clays: before and after the process of organophilization for utilization as nanofiller, Cerâmica 54, 303-308.
إزالة النيزارين الأحمر S من المحلول المائي باستخدام البنتونيت الصوديومي

أيمن عبد العظيم المنوفي - أمنية إبراهيم علي – عبد الحكيم طه قنديل
قسم الكيمياء - كلية العلوم - جامعة حموان – القاهرة - مصر

الموجز

في هذا العمل، تم استخدام البنتونيت الصوديومي لإزالة النيزارين الأحمر (أرس) من محلول مائي باستخدام تقنية الدفعة. تم وصف البنتونيت الصوديومي (بن) باستخدام تحويل فورييه الطيفي بالأشعة تحت الحمراء وحيد الأشعة السينية. تم التحقق من عدة عوامل، والتي تؤثر على إزالة الصبغة مثل درجة الحموضة، وقت الاتصال، تركيز الصبغة الأولي، جرعة البنتونيت، ودرجة الحرارة. أظهرت البيانات المفقحة من الدراسات الحريكية الملمحة العالمية للنموذج الحركي الزائف من الدرجة الثانية متسقة تفسير أفضل للبيانات التجريبيّة. أظهرت دراسات الإيزوثرم الإصتامحية أن معامل فرويديت لديه ارتباط عالي بين نماذج الإيزوثرم المدروسة. وأشارت دراسات الديناميكا الحريكية أن ملامحة (أرس) على ال (بن) يكون تلقائياً في الطبيعة عند درجات الحرارة المنخفضة وطارد للحرارة.

الكلمات الدالة: إزالة النيزارين الأحمر (أرس)، بنتونيت الصوديومي

تحكيم: د. عصام عبد العزيز إبراهيم
د. عبد الفتاح سطراوي فرج
تحكيم: د.ع. عماد عبد العزيز ابراهيم
د. عبد الفتاح بسطاوي فرج