ISOLATION, IDENTIFICATION AND BIOCONTROL OF SALMONELLA TYPHIMURIUM IN KARIESH CHEESE BY BACTEIOPHAGE

Mona S. Ali¹, Ragia O. Mohamed², Hassan M.A. and Fayad A.E.²
¹- Food Technol., Res. Inst., Agriculture Research Center, Giza, Egypt.
²- Food Sci. Dept., Fac. of Agric., Ain Shams Univ., P.O. Box 68 Hadayek Shoubra 11241, Cairo, Egypt
E-mail: profateffayed@yahoo.com

Keywords: Salmonella typhimurium identification by polymerase chain reaction (PCR), Morphology particles of Salmonella bacteriophage examination by transmission electron microscope, Cheese properties

ABSTRACT

The study aims to assess the possibility of biological control on one of the most serious pathogenic microbes that found to infect Kariesh cheese, namely Salmonella typhimurium. To achieve this object, firstly a total of 20 Kariesh cheese samples were collected randomly from various markets located at Cairo and exposed to microbiological isolation and identification of S. typhimurium. The obtained results revealed that, S. typhimurium was detected in 30% of surveyed market Kariesh cheese according to the strain identified by polymerase chain reaction (PCR) technique. Secondary, five sewage water samples were obtained from Fac. of Agric., Ain Shams Univ., and Shoubra EL-Kheima station of drinking and sewage water for specific bacteriophage isolation and morphology particles of Salmonella bacteriophage was examined by transmission electron microscope. Third, pasteurized skimmed buffalo’s milk was converted into experimental Kariesh cheese at 40°C by milk inoculation with 2% of freshly activated yoghurt bacterial starter culture and then milk was divided into 5 equal portions. The 1st portion considered as control. The 2nd, 3rd, 4th and 5th portions were contaminated with equal level (1%) of S. typhimurium suspension containing 10⁸ colony forming units (CFU)/mL, previously isolated from foregoing surveyed Kariesh cheese samples, followed by adding phage suspension, from which isolated from sewage water, containing 10⁸ plaque forming units (PFU)/mL at the levels of nil, 1, 2 and 3% respectively. All portions were separately incubated at the same temperature up to curdling. The curds were cut and individually filled into stainless steel moulds lined with cheese cloth and consolidated by a slight pressure for 24 h. The blocks of curd were then cut, dry salted using 2% NaCl (w/w) and packaged into plastic containers.

Experimentally, there were proportional reductions in lactic acid bacteria (LAB) population as the level of phage spiked into cheese milk increased, as which the reduction rate of LAB count during cold storage period (CSP) prolonging was however declined. In terms of health safety, although the number of pathogen microbe added was gradually reduced due to the acid developed by prolonging the Cold Storage Period in the absence of phage, but it stilled present until the end of experimental period. While, the pathogen was completely eliminated within 7 days of cheese age when the phage suspension (10⁸ PFU/mL) has been spiked at the level of 1% at least.

The contamination of experimental Kariesh cheese with S. typhimurium led to weaken the ability of cheese curd to drain whey as explained from the dry matter (DM) content which decreased due to the presence of pathogen and increased by the pathogen elimination with bacteriophage, which resulted also to increase the protein /DM content. The ash content reduced by both reasons, namely the contamination with S. typhimurium and/or the spiking level of phage suspension. The presence of S. typhimurium slowed the LAB population and acid production by them.

(Received 12 February, 2018)
(Revised 3 March, 2018)
(Accepted 11 March, 2018)
Finally, as a conclusion, the spiking of Kariesh cheese milk with 1% *Salmonella typhimurium* phage suspension (10⁶ PFU/mL) is quite enough to eliminate this microorganism when it present at the level of 1% suspension containing 10⁵ CFU/mL.

INTRODUCTION

White soft cheese is one of the common delicious cheeses consumed in Egypt. There are many varieties of white soft cheese depend on the technique of manufacture, salt percentage and many other factors. White soft cheese is conventionally manufactured from cow or buffalo milk or a mixture of them according to the Egyptian cheese-making technology (Abd El-Salam et al 1976 and Abou-Donia, 1991). Production may be artisanal or industrial, depending on whether the cheeses are manufactured with raw thermized (heated below pasteurization level) or pasteurized milk (Abd-El Salam and Benkerroum, 2006 and Ibrahim and Sobeih, 2010).

Skimmed milk (Kariesh) cheese is one of the indigenous white soft cheese types in Egypt. Kariesh as well as Domiati cheeses are the most popular varieties of soft cheese in Egypt, but the former is the oldest type manufactured since 3000 B.C. Kariesh cheese occupies a significant space in the consume cheese market. It comprises of about 50% of white soft cheeses produced in Egypt (Abou-Donia, 1991; Hegazy et al 2012 and Fayed et al 2013 and 2014). Kariesh cheese is usually produced from skimmed milk using acidification coagulants containing about 70% moisture and not more than 10% fat (El Gendy, 1983; Fayed, 1986 and Fayed et al 2013 and 2014).

In the past traditional Kariesh cheese had been made on the farms from "Rayeb" milk. The latter is a naturally developed acidity coagulant during gravity creaming in earthenware containers. After skimming the sour cream, the "Rayeb" milk is drained in folded mats. Draining of the whey takes two or three days, or until the desired texture of cheese is obtained. Finally, cheese is cut into suitable pieces, then dry salted to taste. The salted cheese is left for a few more hours in the mat until no more whey drains out and is then ready to be consumed as fresh cheese. Resultant cheese is either consumed fresh or after picking in available farm-house milk by-products, e.g. butter milk, "Murta", whey ... etc. (Fayed, 1986).

When, centrifugal separators are used, this cheese is conventionally produced by acid coagulation of mechanically skimmed milk by culturing with lactic acid bacteria. Skimmed milk results inferior Kariesh cheese type due to lower fat content in separator’s skimmed milk. The quality and composition of Kariesh cheese may vary considerably due to such factors affecting the quality and composition of the clotted skimmed milk, the method of manufacture, the time required to complete the drainage of whey, the quality of salt added and the method of handling the finished cheese (Fahmi, 1950; El-Gendy, 1983; Abou-Donia, 1984, 1991, 1999 a, b and 2008). In spite of cheese was previously classified under "safe foods" but across ages, many reports of infections and the intoxications related to the consumption of contaminated cheese which poses a threat to public health and also quality defects in cheese leads to big economic losses (Lindqvist et al 2002).

From a health standpoint, Kariesh cheese continues to suffer from many microbial infections, including pathogens across ages. The pathogenic *Escherichia coli* O157:H7 has been isolated from 19% out of 15 Kariesh cheese samples collected from Cairo & Giza governorate markets (El-Sayed et al 2011). The logarithmic (log) mean values of *Staphylococcus aureus* count were 5.0±0.2 CFU/g. Enterobacteriaceae were found in the examined samples with the log mean values of 4.5±0.1 CFU/g. Moreover, *E. coli* was detected in the examined samples with log mean values of 4.3±0.6 CFU/g. The prevalence rate of *Salmonella* spp. was 10% out of 60 samples (Ibrahim et al 2015).

In another study, a total of 200 cheese samples (100 Kariesh cheese and 100 Domiati cheese) was collected randomly from different supermarkets and retailer shops in Cairo and Giza governorates. Samples were analyzed for total colony count (TCC), total coliforms, *E. coli, Staph. aureus, Bacillus cereus* and yeast and mold counts, as well as for the pathogens *E. coli* O157:H7 and *Salmonella* spp. Both Kariesh and Domiati cheese samples were found to be highly contaminated, having bacterial load exceeding the acceptable limit. The microbiological quality of both cheeses was judged as poor. Pathogenic bacteria (*E. coli, B. cereus* and *Staph. aureus*) were detected in some of the cheese samples (Hassan and Gomaa, 2016).

That in view is leading to report that hence Kariesh cheeses were contaminated with different types of microorganisms giving an indication of poor sanitary conditions may present a public health hazard to the consumers and emphasizes the need for improved hygienic standard, so strict hygienic measures, efficient heat treatment, and application of HACCP system should be performed.

Arab Univ. J. Agric. Sci., Special Issue, 26(2), 2018
Isolation, identification and biocontrol of *Salmonella typhimurium* in karieash cheese by bacteioophage

Consumers dislike the use of chemical preservatives in their food, and with some there is an associated public health risk. This increases the pressure for these chemicals to be removed from food and for the adoption of more “natural” means of preservation. While there are a variety of approaches to using natural preservatives, the most often adopted approach to date has been to use bio-control (McLntryre et al. 2007). The use of biological factors against various pathogenic and saprophyte microorganisms, especially pathogenic bacteria, is defined as a bio-control. The use of bacteriophage as a bio-control factor proposed shortly after the discovery of bacteriophage two times independently by d’Herelle (1917). Unfortunately, bacteriophage studies have been eliminated with the discovery antibiotics. Recently, the studies of use of bacteriophages as a bio-control factor (phage therapy) revived because of increasing antibiotic resistances. Usually, these studies are concentrated about food safety, especially food pathogens such as *E. coli* O157:H7, *Campylobacter*, *Salmonella* and *Listeria* causing epidemics of disease (Hages and Loessner, 2007).

Bacteriophages are natural enemies of bacteria and are suitable candidates for the environmentally friendly biocontrol of these pathogens. In recent years, researchers tended to bring new alternative to biological protective systems used in conservation of food and production of safe food. Use of bacteriophage against to pathogenic bacteria in food was the most hopeful system in these methods about bio-control. Controls of bacteriophage for each pathogen species and subspecies and determination of phage-host originality are important because efficient bio-control was achieved. Researches concentrated on some food-borne pathogen bacteria such as *E. coli* O157:H7, *Campylobacter*, *Salmonella* and *Listeria*. In a consequence of these studies made as *in vitro* and *in vivo*, first commercial production of phage which will be used in foods was made in Netherland. Also, it has been informed that use of phage is cost-efficient alternative as compared with other preservatives. This review, discussed application of bacteriophages as bio-control agents in food and advantages and disadvantages about uses of bacteriophages by taking into account antimicrobial characteristics of them (Kalkan et al. 2011).

For that in view, the study aims to assess the possibility of biological control on one of the most serious pathogenic microbes that found to infect Karieash cheese, namely *Salmonella typhimurium*.

MATERIALS AND METHODS

Materials

A total of 20 Karieash cheese samples were randomly collected during the period of May - June 2014 from various markets located at Cairo. Samples were transported under aseptic condition to the laboratory.

Pasteurized buffalo’s skimmed milk (0.5% fat and 8.5% solids not fat) was obtained from the herd of the dairy cattle at faculty of Agriculture, Cairo Univ., Egypt.

Five sewage water samples were obtained from Fac. of Agric., Ain Shams Univ., and Shoubra EL-Kheima station of drinking and sewage water. Before sampling the external surfaces were scrubbed with alcohol, flaming and taps were flushed. The obtained samples were taken in sterile amber glass bottle of 250 ml capacity and directly transferred to the Virology Lab., Agric. Microbiol. Dept., Fac. of Agric., Ain Shams Univ. in refrigerated container and then maintained at 4-8°C. The microbiological analysis was carried out within 12 h of sampling, including bacteriophage isolation.

Concentrated lyophilized yoghurt bacterial culture (YC-183) consisting of *Streptococcus thermophillus* and *Lactobacillus delbruckii* ssp. *bulgaricus* (1:1) was obtained from Chr. Hansen’s Lab A/S Copenhagen, Denmark.

Sodium chloride (NaCl) was obtained from El-Nasr for salt production Co.

Experimental procedure

1. **Preparation of bacterial starter cultures**

Preparation of YC-183 starter culture was carried out by dissolving 15 g of the lyophilized culture in 1 liter UHT skimmed milk and incubation at 40 ± 1°C up to curdling, whereat it usually coagulated throughout 3 h.

2. **Isolation and identification of *Salmonella typhimurium***

Salmonella sp. was isolated and enumerated as CFU/g according standardized procedures for microbiological examination of food products as described by (AOAC, 2007). The 1st step of detection *Salmonella* sp. was carried out by inoculation with 25 g from cheese sample to 225 ml of buffered peptone water and incubated at 37°C for 18
h. The 2nd step performed in 10 ml tetra thionate broth medium and 1 ml from 1st step was added and then incubated at 37 °C for 24 ± 2 h. In the 3rd step, 1 ml from 2nd step was poured in Petri dish and directly followed by xylose lysine deoxycholate (XLD) or Bismuth Sulphate agar medium (25 mL medium per plate) and incubated for 24 ± 3 h at 37ºC.

Salmonella typhimurium was identified by Polymerase chain reaction (PCR) (Bio rad T100 thermal circular) according to Official method described by Lim et al (2003).

3. Preparation of Salmonella typhimurium suspension

Salmonella typhimurium suspension was prepared according to Fiorentin et al (2005).

4. Phage screening in sewage water in relation to isolated Salmonella typhimurium

Qualitatively, the crude lysate of Salmonella phages was assayed qualitatively using the spot test according to Borrego et al (1987). Three mL of nutrient broth medium containing 0.7% agar were inoculated with 1 ml of Salmonella sp. culture containing 10^9 CFU/mL and then poured onto nutrient agar petri dishes after gently mixing. After solidification, 100 µL of crude Salmonella phage lysate were spotted on surface of media and incubated at 37ºC overnight. The clear lysis zone in the sites of spots was recorded as indication the presence of phage.

Quantitatively, the isolation of viruses was carried out according to Othman (1997) by the double-layer technique using NA-CaCl^2 agar inoculated with a selected propagative culture; the plates were incubated at 37 °C for 16 h. A single plaque was picked up and mixed with a fresh culture (O.D. 600 nm = 0.15) of the indicator strain, after lysis it was centrifuged at 3500 rpm for 15 min and then filtered through a 0.45 µm membrane, this procedure was repeated twice the titer of the phage suspension was defined as PFU/mL.

The crude lysate of Salmonella phages were assayed quantitatively according to Othman (1997) by the soft-agar overlay (double ager layer) method using nutrient agar medium inoculated with Salmonella sp. and incubated at 37ºC for 16 h.

Morphology particles of Salmonella bacteriophage was examined using 2% uranyl acetate as negative staining Luftig (1967) and Othman (1997) by transmission electron microscope.

5. Preparation of Salmonella bacteriophage stock (single plaque)

Biologically stock phage lysate was obtained by the method reported by Othman et al (2008) using the single plaque isolation method. A large amount of the phage stock was obtained by propagation the phage by the liquid culture propagation method used by Othman et al (2008). To amplify the phages, 10 ml of an overnight culture of bacterial cells (10^9 CFU/mL) and 1 ml of the phage (10^11 PFU/mL) were added to 500 mL of broth media and incubated with shaking at 37 ºC for 5 h. After incubation, the bacterium-phage suspension was treated with 10 mL of chloroform to release any progeny phage which might still have been in the host cells, and the suspension was incubated for an additional 10 min with hard shaking. To remove bacterial debris, the suspension was centrifuged at 6000 rpm for 15 min, and the supernatant was withdrawn and filtered through 0.22-µm-pore-size filters. The phage lysates were stored at 4ºC as described by Goodridge et al (2001).

6. Preparation of crude Salmonella phage suspension

250 mL Erlenmeyer flask containing 100 mL of nutrient broth medium was inoculated with 10 mL of tested sewage water and 10 mL of Salmonella strain was mixed. The flasks were incubated at 37ºC for 48 h with (LAB Line instruments Inc. model No.3526-4GMLB). After incubation the cultures were centrifuged at 6000 rpm for 15 min and the supernatant was collected into a clean flask. Chloroform was added with rate of 1:10 followed with vigorously shaking for 5 min. The crude lysate of the phages were obtained and assayed qualitatively and quantitatively according to Borrego et al (1987).

7. Manufacturing procedures of conventional Kariesh cheese

The procedure protocol of conventional Kariesh cheesemaking was applied as described by Fahmi (1950), Fayed (1986) and Fayed et al (2013). Pasteurized skimmed buffalo’s milk was heated at 40ºC, inoculated with 2% of freshly activated YC starter culture and then divided into 5 equal portions. The 1st portion was the control. The 2nd, 3rd, 4th and 5th portions were contaminated with equal levels (1%) Salmonella typhimurium suspension containing 10^5 colony forming units (CFU)/mL fol-
Isolation, identification and biocontrol of *Salmonella typhimurium* in karieh cheese by bacteriophage

followed by adding phage suspension 10^8 plaque forming units (PFU)/mL at the levels of nil, 1, 2 and 3% respectively. All portions were separately incubated at the same temperature up to curdling. The curds were cut and individually filled into stainless steel moulds lined with cheese cloth and consolidated by a slight pressure for 24 h. The blocks of curd were then cut, dry salted using 2% NaCl (w/w) and packaged into plastic containers (Fig. 1). Three replicates were carried out for each treatment.

Analytical methods

1. Chemical analyses

Dry matter (DM), fat, protein, ash and titratable acidity (TA) were determined according to AOAC (2007). The NaCl content was determined according to method of Van der Burg, which described by Kotterer and Munch (1978). The pH value was measured electrometrically using Lab. pH meter with a glass electrode, Hanna model 8417 digital pH meter.

2. Enumeration of lactic acid bacteria

Lactic acid bacteria count was determined using MRS agar according to De Man et al (1960). The plates were incubated at 35ºC for 48 h.

3. Statistical analysis

The obtained data were exposed to proper statistical analysis according to statistical analyses system user's guide (SPSS, 1998).

RESULTS AND DISCUSSION

1. Safety situation of market conventional Karieh cheese towards *Salmonella typhimurium*

Data illustrated in Table (1) indicated that *Salmonella typhimurium* was detected in 30% of surveyed market Karieh cheese according to the strain identified by PCR technique and morphological shape pictured in Fig. (2 A&B).

Moreover, as could be observed in the Table (1) that, *S. typhimurium* had appeared negative behavior towards the Gram test .While it possessed catalase production. These results are in complete coincidence with those reported by Holt et al (1994).

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage of infected samples</td>
<td>30%</td>
</tr>
<tr>
<td>Biochemical characteristic</td>
<td></td>
</tr>
<tr>
<td>Gram stain</td>
<td>-</td>
</tr>
<tr>
<td>Catalase</td>
<td>+</td>
</tr>
<tr>
<td>Growth temperature degree</td>
<td></td>
</tr>
<tr>
<td>30 ºC</td>
<td>++++</td>
</tr>
<tr>
<td>37 ºC</td>
<td>++++</td>
</tr>
<tr>
<td>44 ºC</td>
<td>+</td>
</tr>
<tr>
<td>51 ºC</td>
<td>-</td>
</tr>
<tr>
<td>58 ºC</td>
<td>-</td>
</tr>
<tr>
<td>65 ºC</td>
<td>-</td>
</tr>
<tr>
<td>Sugar fermentation</td>
<td></td>
</tr>
<tr>
<td>Glucose</td>
<td>-</td>
</tr>
<tr>
<td>Mannitol</td>
<td>-</td>
</tr>
<tr>
<td>Arabinose</td>
<td>-</td>
</tr>
<tr>
<td>Gelatine liquefaction</td>
<td>-</td>
</tr>
</tbody>
</table>

Concerning the growth ability at different temperatures, *S. typhimurium* could not grow at a temperature higher than 44ºC (Table, 1). The forgoing results agree with those reported in Holt et al (1994).

Regarding the possibly of the detected pathogens for sugar fermentation, the obtained results declared that, *Salmonella* sp. could not ferment sugar, namely glucose, mannitol and arabinose. Also it did not able to liqate gelatin as present in Table (1). These results are in accordance with Holt et al (1994).

2. Characteristics of specialized bacteriophage of *Salmonella typhimurium*

Electron microscopy of *Salmonella* bacteriophage particles revealed that, the virus is long, curled non contractile tail. The phage particle has an isometric head with diameter of about 91.11 nm and the tail has 23.07 nm in length (Fig. 3). The phage assigned to family Myoviridae as indicated by the presence of along contractile tail.

Furthermore, spot test showing the bacterial lysis caused by virulent bacteriophage specific for *S. typhimurium* (Fig. 4). Likewise, plaque assay showing identical morphological plaques of *S. typhimurium* (Fig. 5).
Fig. 1. Flow diagram of conventional Kariesh cheese making contaminated with *Salmonella typhimurium* and spiked with its phage.
Isolation, identification and biocontrol of *Salmonella typhimurium* in kariesh cheese by bacteiphage

Salmonella typhimurium

Fig. 2. Picture of *Salmonella typhimurium* colony by light microscope (A) and by polymerase chain reaction (PCR) technique (B).

Fig. 3. Electron micrograph of purified *Salmonella* bacteriophage negatively stained with 2% uranyl acetate (Magnification X-80000)

Fig. 4. Spot test showing the bacterial lysis caused by virulent bacteriophage specific for *Salmonella typhimurium*
Furthermore, the persistence study on the selected phage indicated its resistance ability towards a range of temperature degrees or pH values (Table 2) making it could be suitable for the condition of Kariesh cheese manufacturing.

3. Biocontrol of *Salmonella typhimurium* in Kariesh cheese by bacteriophage

3.1. Microbiological quality of Kariesh cheese

Bacteriologically, there were proportional reductions in LAB population as the level of phage spiked into cheese milk increased, as which the reduction rate of LAB count during CSP prolonging was however declined (Table 3).

In terms of health safety, although the number of pathogen microbe added was gradually reduced due to the acid developed by prolonging the CSP in the absence of phage, but it stilled present until the end of experimental period. While, the pathogen was completely eliminated within 7 days of cheese age when the phage suspension (10⁸ PFU/mL) has been spiked at the level of 1% at least (Table 3).

Table 2. Spot test of *Salmonella* bacteriophage particles along different temperature degrees for 7 days and pH values for one day

<table>
<thead>
<tr>
<th>Post survival (day)</th>
<th>Temperature degree (°C)</th>
<th>-20</th>
<th>4</th>
<th>24</th>
<th>37</th>
<th>42</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>2</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>4</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>5</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>6</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>7</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>pH value</th>
<th></th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post survival for one day</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>
Isolation, identification and biocontrol of *Salmonella typhimurium* in kariesh cheese by bacteioephage

Table 3. Microbiological quality (log CFU/g) of Kariesh cheese as affected either by the contamination with 1.0% *Salmonella typhimurium* suspension (10⁵ CFU/mL) and/or spiking with different levels of its specific phage suspension (10⁸ PFU/mL) during cold storage period (CSP) for 14 days

<table>
<thead>
<tr>
<th>Strain</th>
<th>CSP(Day)</th>
<th>Control</th>
<th>Contamination with 1% Salmonella suspension (10⁵ CFU/mL)</th>
<th>Spiking level with Salmonella typhimurium phage suspension (10⁸ PFU/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nil</td>
<td>1%</td>
</tr>
<tr>
<td>LAB</td>
<td>Fresh</td>
<td></td>
<td>5.78<sup>a,a</sup></td>
<td>5.69<sup>a,a</sup></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td></td>
<td>4.79<sup>a,b</sup></td>
<td>2.79<sup>c,b</sup></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td></td>
<td>1.77<sup>c,a</sup></td>
<td>1.77<sup>a,c</sup></td>
</tr>
<tr>
<td>Salmonella typhimurium</td>
<td>Fresh</td>
<td></td>
<td>ND</td>
<td>4.04</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td></td>
<td>ND</td>
<td>1.55</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td></td>
<td>ND</td>
<td>1.30</td>
</tr>
</tbody>
</table>

LAB: Lactic acid bacteria ND: Not detected CFU: Colony forming unit PFU: Plaque forming unit

The letters before comma possess the factor of contamination with 1% *Salmonella* suspension. While those after comma possess the factor of spiking level with *Salmonella typhimurium* phage suspension. The means with the same letter at any position did not significantly differ (P>0.05).

3.2. Physiochemical properties of Kariesh cheese

The results present in Table (4) indicated that, the dry matter (DM) contents of cheese varied significantly among either the contamination with *S. typhimurium* or the level of bacteriophage suspension spiked. Moreover, the letter of Dancan’s test demonstrated that, the presence of *S. typhimurium* weakened the ability of cheese curd to drain whey while, the adequate control of pathogen with its bacteriophage has helped the curd to reject whey to be like the non-infected cheese curd (the control).

While, the prolonging of CSP to 14 days did not lead to any significant changes in the DM% of all cheese samples studied (Table, 4).

It is worthy to mention that, DM% of all samples are, indeed, in surrounding on the legal standard of EOSQ (2005), which provided that the DM content of Kariesh cheese should be not less than 25%.

These results are in coincidence with those of Kariesh cheeses whether from street vendors or certain local brands regardless their ages reported by Bakry et al (2011) and Fayed et al (2013 and 2014).

Concerning the protein /DM content, data given in Table (4) show that, except of the control, there was a significant increment in the protein /DM content associated with the ascending spiking level with bacteriophage suspension. This phenomenon could be ascribed to the fact of the killing action possessed the phage added on the pathogen strain and hence the acidity became better developed leading to more whey drainage followed by increase in the protein portion in the DM. There is another reason, but to a lesser degree, structurally phages consist of a nucleic acid genome enclosed within a protein or lipoprotein coat as described by Guttman et al (2005). While the CSP along 14 days had no significant influence on this criterion.
Table 4. Physiochemical properties of Kariesh cheese as affected either by the contamination with 1.0% *Salmonella typhimurium* suspension (10^6 CFU/mL) and/or spiking with different levels of its specific phage suspension (10^8 PFU/mL) during cold storage period (CSP) for 14 days

<table>
<thead>
<tr>
<th>Property</th>
<th>CSP(Day)</th>
<th>Control</th>
<th>Spiking level with Salmonella typhimurium phage suspension (10^8 PFU/mL)</th>
<th>Contamination with 1% Salmonella suspension (10^6 CFU/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1%</td>
<td>2%</td>
</tr>
<tr>
<td>Dry matter (DM)%</td>
<td>fresh</td>
<td>25.63±a</td>
<td>25.09±a</td>
<td>25.09±a</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>25.60±a</td>
<td>25.08±a</td>
<td>25.09±a</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>25.62±a</td>
<td>25.09±a</td>
<td>25.09±a</td>
</tr>
<tr>
<td>Protein/DM %</td>
<td>Fresh</td>
<td>70.27±a</td>
<td>63.90±a</td>
<td>65.24±a</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>70.24±a</td>
<td>64.09±a</td>
<td>65.25±a</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>70.94±a</td>
<td>64.20±a</td>
<td>67.44±a</td>
</tr>
<tr>
<td>Fat %</td>
<td>Fresh</td>
<td>0.8±b</td>
<td>0.8±b</td>
<td>0.9±b</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.7±a</td>
<td>0.7±a</td>
<td>1.0±a</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>0.7±a</td>
<td>0.8±a</td>
<td>0.8±a</td>
</tr>
<tr>
<td>Ash %</td>
<td>Fresh</td>
<td>1.87±a</td>
<td>1.877±ab</td>
<td>1.866±bc</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1.876±a</td>
<td>1.867±ab</td>
<td>1.865±bc</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>1.887±a</td>
<td>1.877±ab</td>
<td>1.880±bc</td>
</tr>
<tr>
<td>Salt %</td>
<td>Fresh</td>
<td>1.357±a</td>
<td>1.367±b</td>
<td>1.159±a</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1.324±a</td>
<td>1.324±b</td>
<td>1.148±a</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>1.346±a</td>
<td>1.135±b</td>
<td>1.135±a</td>
</tr>
<tr>
<td>Acidity %</td>
<td>Fresh</td>
<td>0.54±a</td>
<td>0.46±a</td>
<td>0.43±ab</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.63±a</td>
<td>0.52±a</td>
<td>0.50±ab</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>0.70±a</td>
<td>0.56±a</td>
<td>0.72±ab</td>
</tr>
<tr>
<td>pH value</td>
<td>Fresh</td>
<td>5.00±a</td>
<td>5.11±a</td>
<td>5.25±a</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>4.40±a</td>
<td>4.60±a</td>
<td>4.50±a</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>4.20±a</td>
<td>4.30±a</td>
<td>4.20±a</td>
</tr>
</tbody>
</table>

CFU: colony forming unit. PFU: plaque forming unit.

The letters before comma possess the factor of contamination with 1% *Salmonella* suspension. While those after comma possess the factor of spiking level with *Salmonella typhimurium* phage suspension. The means with the same letter at any position did not significantly differ (P>0.05).

Regarding the fat content, due to the Kariesh cheese made from skimmed milk, the low fat content was slightly significant affected either by the level phage suspension added or the CSP of resultant product and did not exhibited any obvious trends.

With regard to the ash content of Kariesh cheese as a function of the spiking level with phage suspension data revealed that, similar to that occurred in the DM%, the ash content gradually declined as the phage level raised, nevertheless, the prolonging of CSP did not lead to any significant changes in the ash level of cheese.

While, The salt content in Kariesh cheese appeared different responses towards the spiking level with phage suspension, while the CSP caused nonsignificant differences in the criterion.

Moreover, the statistical analysis declared that the acid development was significantly slowed due to the presence of phage suspension at any level.

Nevertheless the differences in the TA% of cheese along the CSP were not significant.

Furthermore, the pH value of cheese did not exhibit any significant changes whether among the spiking level of the phage suspension or along the CSP for 14 days.
As a conclusion, the spiking of Kareish cheese milk with 1% *Salmonella typhimurium* phase suspension (10^6 PFU/mL) is quite enough to eliminate this microorganism when it present at a count as that gained when contaminated with 1% suspension containing 10^5 CFU *S. typhimurium*/mL. was added.

REFERENCES

عزل وتعزيز التحكم الحيوي لميكروب Salmonella typhimurium في الجبن باستخدام البكتيروفاج

منى صبرى عمى 1 - راجح عمر محمد 1 - مصطفى عبد الله حسن 2 - عاطف السيد فايد 2
1 - معهد بحوث تكنولوجيا الأغذية - مركز البحوث الزراعية - الجيزة - مصر
2 - قسم علم الأغذية - كلية الزراعة - جامعة عين شمس - مدينة نصر - القاهرة - مصر

الكلمات الدالة: التعزيز بواسطة سلسلة تفاعل البوليميراز - الفحص بالميكروسكوب الإلكتروني لكيفية التحكم الحيوي

الموجز

تهدف هذه الدراسة إلى إمكانية التحكم الحيوي لميكروب بعد أن يتميز الميكروبات المرضية تواجداً وشعاً في الجبن القرش ألا وهو بكثيراً S. typhimurium. ولتحقيق هذا الهدف تم أولاً تجميع 20 عينة من الجبن القرش عشوائياً من مختلف الأسواق المحلية بالقاهرة وانجح الفحص الميكروبيولوجي لها عبر الفحص الميكروبيولوجي، تأديب عينات S. typhimurium وتعزيز الميكروب بالباكتيروفاج (الكثافة باكتيرفاج بالكمية 10^9 باكتيرفاج/مل) في الجبن، وتمConfigure 5 عينات من مياه الصرف من مصانع للبلغم بغرض عزل البكتيريو فاجات النشطة واختبارها على تمريض الف автомايكروباتي S. typhimurium. وتم تطبيق ذلك عمى جبن قريش طبيعي من مصنع السابق تمويثاً باكتيريا S. typhimurium ذات واعية من 0، 1، 2، 3% من معمق الفاج عمى التوالي. ثم تحضين جميع العينات كل على حدة حتى تمام التجفيف. وانجزت عمى هذا عمى عينات بلاستيكية زجاجية، وتم تنظيف فقدان 2% كموريد الصوديوم ووضعها في عبوات بلاستيكية لحفظها. ولقد أوضحت النتائج في العينات التجريبية المصنعة بالعمل وجود تراجع نسبي في إعداد بكثيريا حمض اللاكتيك في العينات وكان ذلك ينضاف طريداً مع زيادة نسبة الفاج المضادة، كما انخفضت أعداد بكثيريا حمض اللاكتيك على مدى فترة التخزين. ومن ناحية السلامة الغذائية فقد حدث انخفاض تجريبي في غياب...
الفأج لأعداد بكتيريا S. typhimurium الفضية كنتيجة للظروف الحامضية السائدة بالجبن على مدار فترة التخزين المبرد ولكنها ظلت موجودة حتى نهاية الفترة التجريبية (14 يوم). من التخزين، بينما اختفت تماما خلال سبعة أيام من التخزين المبرد للعينات المشابهة لها ملعق الفأج ولو بتركيز 1% وهو أقل تركيز S. typhimurium استخدم في البحث. كما أدى التلوث ببكتيريا
S. typhimurium إلى تقليل قابليات الجبن القريش لتصفية الشرش كما استنتج ذلك من نسبة المادة الجافة التي انخفضت نتيجة وجود الميكروب المرضي وزادت نسبة المادة الجافة نتيجة القضاء عليه بواسطة الفأج والذي أدى أيضا إلى زيادة المواد البروتيني للمادة الجافة كما انخفضت نسبة المحتوى الجبن من الرماد لنفس السببين

S. typhimurium والسببين وهو التلوث ببكتيريا S. typhimurium والسببين ونسبة المادة العضوية من مستخلص الفأج. كما أدى وجود B. cereus إلى تكاثر بكتيريا حمض اللاكتيك وبالتالي انخفاض معدل إنتاج الحامض.

وفي النهاية يستنتج من ذلك إنه يمكن القضاء على B. cereus بالجبن القريش وذلك بإضافة 1% على الأقل من المستخلص المحتوى على الفأج المختصر بتركيز 10^8/مل. لو كانت ملوثة بأعداد كميتة التي حدثت نتيجة إضافة 1% ملوث من بكتيريا S. typhimurium ميكروب/مل. في المحتوى على 5 خليط ميكروبي/مل.