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Abstract: The objectives of the current study were to investigate the oppor-

tunity of estimating soil salinity from hyperspectral data and identifying the 

most informative spectral zones for estimation. Electrical conductivity (EC) 

measurements of ninety topsoil samples (0–30 cm) collected from Osaka, 

Egypt, were used as the data set. An analytical spectral device was employed 

to collect the reflectance spectral signatures of soil samples. Both linear re-

gression and HSD Tukey’s analyses displayed that the SWIR1 and SWIR2 

zones are the most suitable for soil salinity prediction while, blue, green and 

NIR were the wickedest. Moreover, EC estimation was better in the case of 

lower soil salinity (0-2 dS m-1) than higher levels (8<dS m-1). Partial least 

squares regression (ΡLSR) was employed to establish a soil salinity predic-

tion model using the training set of soil samples (n=75). The PLSR model 

was set up using the most informative wave bands (SWIR1 and SWIR2). 

The result showed that the PLSR linear model gave a precise prediction of 

soil salinity (R2 = 0.93). The results revealed that employing reflectance val-

ues in SWIR in the model variables increases the precision of soil EC predic-

tion. 

 

 
1 Introduction 
 

 Soil salinization problems mostly show up be-

cause of the accumulation of salts in soil, which 

moves up and precipitates at the soil surface. Ac-

cording to Aldabaa et al (2015) and Pessoa et al 

(2016), salts accumulate in soils often from geo-

logical formations including halite, shale and gyp-

sum, or anthropogenic practices. Dehaan and Tay-

lor (2002) mentioned that various factors may 

cause soil salinization, while the most important 

factor is the upward movement of salty water to 

the soil surface. The salts usually accumulate in 

surface soils because of capillary rise. Subse-

quently, the signs of increasing salt content at the sur-

face layer are possible to vary depending on the fac-

tors influencing the extent of salinization. 

On the other hand, for better soil management, op-

erative agricultural management plans are needed, 

especially in semi-ᶏrid and ᶏrid areas. Fast and steady 

soil salinity monitoring is vital for making such effec-

tive plans (Pessoa et al 2016). 

During the last two eras, several researchers have 

studied the capabilities of remote sensing data for 

monitoring and estimating various soil properties in 

various countries (Poggio and Gimona 2017, Xu et al 

2018, Angelopoulou et al 2020, Mahajan et al 2021).  
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Remote sensing uses the different sensors' data 

from space to detect salinization. The sensors rec-

ord the amount of returned electromagnetic ener-

gy from the sensed targets. The wavelengths rang-

ing between 400 to 2400 nm are frequently used 

for different resource studies. The incidence of 

salts in the soil could be sensed using remote 

sensing data in the following two approaches; di-

rect way on barren soils, using the efflorescence 

of the crusted salts, or through detecting the re-

flectance spectra of the growing vegetation as 

these are affected by salinity (Abd-Elwahed 

2005). 

Several studies used remote sensing data to 

study extremely saline soils while disregarding 

soils with low salt content, which should be the 

primary focus of soil deterioration research  Moni-

toring and evaluation of low soil salinity values is 

considered difficult, which is mostly related to the 

quality and the nature of remote sensing sensors. 

The data type and quality usually do not allow for 

collecting information on soil depth (third dimen-

sion). Moreover, the consequence of salinity on 

electromagnetic features requires more investiga-

tions to recognize how it can be related and esti-

mated from remote sensing data (Farifteh and Far-

shad 2002).  

Hyperspectral remote sensing information is 

mostly related to the target properties and sensor 

type (Richards 2013, Camps-Valls et al 2011). 

Hyperspectral remote sensing has high potential 

and is progressively employed in various applica-

tions (for example: food safety, quality control 

and quantitative assessment of soil and vegetation 

attributes) (Minu et al 2016). 

The results of Dwivedi and Sreenivas, (1998), 

Abd-Elwahed (2005) and Singh et al (2017) estab-

lished the importance of remote sensing proce-

dures in soil salinity monitoring and detection. 

According to Singh et al (2017), some spectral 

confusion may occur when dealing with soil salin-

ity. The key reason for spectral misperception was 

the confusion of various salinity levels with soil 

textures, land cover, and calcium carbonate con-

tent. Moreover, reflectance declines, and detecting 

salts became difficult with increasing soil water 

content, and the occurrence of iron oxides. Like-

wise, the incidence of OH- groups reduced the 

reflectance in both MIR and NIR spectral ranges 

(Mougenot et al 1993 and Minu et al 2016). Posi-

tive results were obtained by Ben-Dor et al 

(2002), Hu et al (2019) and Schreiner et al (2021) 

in employing the hyperspectral data to study soil 

salinity and produce salinity maps. 

Under laboratory conditions, Csillag et al (1993) 

recognized six spectral bands (shortwave-infrared, 

Near-Infra-Red and visible bands) related to different 

salinity levels of the soils under salinization and alka-

lization developments using modified stepwise princi-

pal component analysis band selection methodology.  

According to Abd-Elwahed (2005), most of the in-

vestigations used remote sensing approaches to dis-

criminate among a few classes of soil salinity (less 

than 4 classes). Generally, highly saline zones are 

simply identified, whereas low-salinity stages and the 

early phases of soil salinity are more problematic to 

discriminate. 

Recently, Bannari et al (2018) studied the hyper-

saline soils in the United Arab Emirates to find the 

correlation between soil salinity values and the soil 

samples spectral reflectance. They analyzed hyper-

spectral signatures and figured out a new exceptional 

anhydrite calcium sulfate-rich soil inside the hyper-

saline coastal soil in the United Arab Emirates which 

resulted in the addition of a new soil type into the 

USDA-Soil Taxonomy. 

The main objective of the current investigation is 

to determine the most sensitive, treasured spectral 

bands that could be used in estimating soil salinity. 
 

2 Materials and Methods 
 

2.1 Soil sampling and laboratory analysis 
 

Following a 250-meter symmetric grid, 120 sam-

pling locations were set (Fig 1) and 365 soil samples 

(Including surface and subsurface samples) were col-

lected. The soil samples were registered using a hand-

held global positioning system (GPS) “MAGELLAN-

GPS NAV DLX-10 TM”. From the 365, a total of 90  

surface soil samples were selected for this study. Elec-

trical conductivity (ECe) was determined according to 

Jackson (1967), in soil paste extract using EC-meter 

(Consort C932) expressed in dSm-1. 
 

2.2 Reflectance measurements 
 

The air-dried soil samples were passed through a 

2-mm sieve and then laboratory spectral measure-

ments were performed. The reflectance spectra of the 

soil samples were recorded using a Range Analytical 

Spectrum Device (ASD Field-Spec 4) with an 8o field 

of view (FOV). Each soil sample covered the entire 

device FOV. Reflectance values were recorded in a 

full optical spectral range of 350-2500 nm. The spec-

tral region 350-1050 nm has a 1.4 nm sampling inter-

val, while it was 2 nm in the spectral region of 1000-

2500 nm. The resulting data has one nanometer inter-

val for the 350-2500 nm range. The spectrum specifi-

cations of ASD (ASD, Boulder, CO, United States) 

are shown in Table 1 (Pimstein et al 2011). 
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Fig 1. Soil sampling location map of the study area 

 
Table 1. The Analytical Spectral Device Field Spec 

spectral specifications 

 

Spectral Range 

(nm) 

350-2500 

Resolutions (Spectral) 

(nm) 

3 : 700  

8.5 : 1400  

6.5 : 2100 

Sampling Intervals 

(nm) 

1.4 : 350-1050  

2 : 1000-2500 

 

For each soil sample, triplicate readings were 

recorded, and then a spectral reflectance of a ref-

erence white panel was recorded. For each soil 

sample, the deviation of root-mean squares 

(RMSD) of the three replicates readings was aver-

aged ± 0.12% reflectance. 

The hyperspectral data collected in the labora-

tory were then employed to derive spectral varia-

bles that could characterize the variability of the 

soil salinity (Abd-Elwahed 2005, Di et al 2010). 

 
2.3 Statistical Analysis 

 
The data were analyzed in JMP_(SAS) soft-

ware (Jones and Sall 2011). In order to recognize 

the best wave zone correlated with salinity, linear 

regression analysis and the least significant differ-

ences test (LSD and Tukey-HSD for honest significant 

difference) were performed. They were used to check 

the difference between data clusters (McDonald 

2014). 

The relationship between ECe and the spectral re-

flectance, that resampled to Landsat 8 bands; blue 

(450-510 nm), green (530-570 nm), red (640-690 nm), 

NIR (850-880 nm), SWIR1 (1570-1670 nm) and 

SWIR2 (2110-2290 nm), were examined. According 

to Medjahed et al (2016), regression model creation 

mainly relies on band selection.  

Least significant differences (LSD) are computed 

according to Williams and Abdi (2010) methodology. 

The mean reflectance spectrum range of each spectral 

band was compared using Tukey’s HSD was estab-

lished in response to the LSD test. 
 

2.4 PLSR Modeling 
 

In spite of the fact that hyperspectral data include a 

huge amount of information, managing and processing 

this type of data introduce some challenges related 

to redundancy elimination. Partial-least-squares re-

gression (ΡLSR) has been used in several scientific 

fields to create linear models between multivariate 

information, particularly when dealing with a huge 

number of data points. PLSR regression is a data-

handling approach that is often used to realize rela-
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tionships between two data groups. It uses a linear 

multivariate model to forecast one data group us-

ing the measured values of the other group. PLSR 

looks for maximizing the covariance between the 

two data groups.  

Before creating the model, one of the most im-

portant steps was the selection of informative 

spectral bands among the enormous range of hy-

perspectral data. Two steps were applied to reduce 

the input band numbers. The first step was 

resampling of spectral resolution from 1 nm of the 

two bands (SWIR1 and SWIR2) to 10 nm. The 

second one was using the PLS-stepwise band re-

moval/selection approach to select the most in-

formative bands. According to Jin and Wang 

(2019), the stepwise-PLS approach was optimal 

among four approaches to identify informative 

bands to estimate leaf chlorophyll content.  

In the current investigation The PLSR model-

ing was applied; to create a soil salinity estimation 

model, using JMP_(SAS) software (Jones and Sall 

2011). The spectral reflectance values along with 

the measured soil ECe data of 90 soil samples 

were used for modeling (75 samples as training 

set and 15 samples as validation set).  

 

3 Results and Discussion 
 

The data in Table 2 revealed that ECe  values 

in the studied soil samples ranged between 0.52 

and 89.04 dS m-1 with a mean value of 16.02 dS 

m-1, the standard deviation was 18.64 and the 

CV% was 116.34%. 
 

Table 2. The statistics (descriptive) of soil salinity 

(ECe) values  

 

Statistics Min. Max. Mean. SD CV% Skewness Kurtosis 

ECe 

)1-(dS m 
0.52 89.04 16.02 18.64 116.34 2.02 4.17 

 

The spectral signature pattern for the 90 soil 

samples (four ECe classes) and the average reflec-

tance for each ECe class are shown in Fig 2. The 

reflectance pattern followed the same style; as 

though, the soil samples with higher salinity con-

tent had higher reflectance values. 

The spectral reflectance curves have a similar 

trend, increasing the wavelength (λ) increased the 

reflectance. The reflectance in the visible region 

(400 – 700 nm) was the lowest that can be ex-

plained according to Mahajan et al (2021) by the 

presence of minerals that contain iron oxide which 

absorbs short wavelengths (less than 0.54 µm). 

The variations amongst the different studied soil salin-

ity were minor.  

Three spectral absorption concave features were 

denoted around 1400, 1900 and 2200 nm. According 

to several researchers (Ma and Fan 2020, Das et al 

2021) the first two absorption features are linked to 

the water content, while the feature around (2200 nm) 

is related to the OH- groups in soil clay and organic 

matter contents (Ben-Dor 2002, Sun et al 2018, An-

gelopoulou et al 2020, Wang et al 2021). These con-

cave absorption features increase with increasing ECe 

(salinity). The highest spectral reflectance values were 

mostly located between 1300-1800 nm (SWIR2 spec-

tral region). 

To find out the best spectral bands for sensing dif-

ferent soil salinity levels, certain statistical processes 

were employed on the measured spectral reflectance. 

The results of regression analysis (R2 values shown in 

Table 3) showed that the highest obtained R2 values 

for each salinity class were 0.662, 0.633, 0.594 and 

0.706 for SWIR1, Blue, SWIR1 and SWIR1, respec-

tively. These results agree with those of Wang et al 

(2019), who used the SWIR bands in the salinity de-

tection index to map soil salinity. Tukey’s test con-

cluded prominence discrepancy among the four stud-

ied salinity classes compared with all other spectral 

zones for every mean, maximum and minimum of re-

flectance (Fig 3).  The results revealed that SWIR1 and 

SWIR2 were the most favorable zones to discriminate 

among the four studied salinity classes followed by 

red, while blue, green and NIR were inadequate for 

spectral discrimination.  

The low salinity levels (0-2) show real dissimilar 

reflectance in all six spectral regions.  

In general, the results of Tukey’s HSD displayed 

that both SWIR spectral zones (1 and 2) were the most 

sensitive spectral regions to discriminate between the 

studied soil salinity levels followed by the red band. 

These results agree with the previously obtained re-

sults from regression analysis. This result is steady 

with several previous and recent studies that suggest 

using the spectral reflectance zone ranging between 

1000 and 2500 nm to study soil salinity and discrimi-

nate between different soil salinity levels (El-Battay et 

al 2017, Bannari et al 2018, Sahbeni 2021) stated that 

the saline soil show indicative features in the 

shortwave infrared band between 1000 to 2500 nm.   
 

PLSR model for Soil Salinity  
 

PLSR was employed to figure out the best predic-

tion model of soil ECe based on the soil reflectance 

values in both SWIR1 and SWIR2 spectral zones. The 

result of the PLSR model is shown in Fig 4. 
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Fig 2. The Spectral signatures for the collected soil samples with various ECe levels and its average spectrum 

 

Table 3. The R2 values collected from the regression analysis between reflectance values and ECe 

 

Spectral band (range) 
0-2 dSm-1 2-8 dSm-1 8-16 dSm-1 16< dSm-1 

R2 

Blue (450-510 nm) 

Green (530-570 nm) 

Red (640-690 nm) 

NIR (850-880 nm) 

SWIR1 (1570-1670 nm) 

SWIR2 (2110-2290 nm) 

0.574 

0.547 

0.617 

0.338 

0.662 

0.569 

0.433 

0.094 

0.251 

0.359 

0.309 

0.533 

0.168 

0.321 

0.492 

0.417 

0.594 

0.017 

0.548 

0.471 

0.407 

0.396 

0.706 

0.305 
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Fig 3. Analysis of variance (ANOVA ; Tukey’s) to distin-

guish among four soil salinity classes in blue, green, red, 

NIR, SWIR1 and SWIR2 wavebands means. 
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Fig 4. Scatterplot for Predicted soil ECe values using PLSR-Model vs. measured values. (a) 75 samples training set; (b) 

15 samples validation set. 
 

It could be verified that hyperspectral data in 

the SWIR range can effectively distinguish be-

tween various soil ECe values of the studied soil 

samples. The prediction model for soil ECe 

showed high correlation (R2) for both training and 

validation groups 0.93 and 0.908, respectively. 

Meanwhile, ECe showed low RMSE (1.87 and 

1.67) between predicted and measured soil EC 

values for both training and validation groups, respec-

tively. In the current study, the linear prediction model 

showed a good ability for soil salinity prediction. 

These results agree with the results of Farifteh et al 

(2007) and Zeng et al (2018) who considered the 

PLSR as a valuable model over other non-linear mod-

els for soil salinity prediction. They found similar ac-

curacies between PLSR-Model and other models. But, 
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it is easier and consumes less time for creation. 

Instead, some investigations (Mahajan et al 2021, 

Das et al 2021) stated that non-linear prediction 

models gave better results under their experi-

mental conditions. It could be concluded that us-

ing the PLSR model to develop soil ECe (salinity) 

detection, prediction and mapping using hyper-

spectral remote sensing data is suggested. 
 

4 Conclusions 
 

It could be concluded from the results of the 

current study that hyperspectral remote sensing 

displayed adequate capability to study, distinguish 

and predict soil salinity at various levels. Increas-

ing soil salinity levels increased its reflectance for 

the whole spectrum (350 -2500 nm). The most 

sensitive wavelengths for soil salinity prediction 

were identified to be in the SWIR region (1570 -

2290 nm). The reflectance values in these wave-

bands exhibited salinity-related features to predict 

soil salinity. Multivariate PLSR-modeling ap-

proaches using SWIR bands were found good for 

soil salinity (ECe) prediction. The advantages of 

utilizing hyperspectral information in soil salinity 

forecast are the lower costs compared to the con-

ventional field-based methods and the simplicity 

of using these models on satellite images for salin-

ity mapping. It is proposed that these prediction 

models be subject to more investigations and prior 

to employment in soil mapping. 
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