AUTOMATIC IRRIGATION BY USING SOIL MOISTURE SENSOR IN VERTICAL CLOSED SYSTEM FOR LETTUCE PRODUCTION

1. Agricultural Engineering Dept., Fac. of Agric., Ain Shams Univ., P.O. Box 68-11241 Hadyek Shoubra, Cairo, Egypt
2. Horticulture Dept., Fac. of Agric., Ain Shams Univ., P.O. Box 68 Hadyek Shoubra 11241, Cairo, Egypt

*Corresponding author: ayaa_khalil@yahoo.com

Received 15 September, 2018, Accepted 18 September, 2018

ABSTRACT

The experiment was held at the Arid land Agricultural graduate studies and Research Institute - Ain Shams University. A soil moisture sensor is designed and used for measuring and controlling soil moisture content in plant media. The device has been programmed and connected to three water-lifting pumps to operate them according to each treatment. A vertical system has been constructed using 18 columns of white square styrofoam pots filled with perlite (In-organic substrate). Three soil moisture content treatments were selected as $T_1 = 60\%$, $T_2 = 80\%$, and $T_3 = 100\%$ which were controlled by the sensors. Solution tank filled with dissolved nutrient elements was used for supplying required water. Two types of lettuce (green and red) lettuce seedlings were planted in the perlite substrate and irrigated by drip irrigation system. The system was closed and was based on smart automatic drip irrigation system.

Results revealed that, 556.5 liters of water was consumed under condition of $T_1 = 60\%$, while 697.5 liters and 908.5 were consumed under condition of $T_2 = 80\%$, and $T_3 = 100\%$ respectively. After 47 days the Red lettuce yield (weight, number of leaves, and also weight of dry lettuce) was higher than green lettuce for all treatments.

Yields of lettuce per system unit (4.5 m2) 16 kg/m2 and water use efficiency 26kg/m3 (Barbosa et al 2015) conventional production yielded 3.9 ± 0.21 kg/m2/y of lettuce produce, with water. Hydroponics offered 11±1.7 times higher yields but required 82±11 times more energy compared to conventionally produced lettuce.

Keywords: Agricultural engineering, Soilless culture, Perlite substrate, Soil moisture sensor, Vertical hydroponics

INTRODUCTION

We have to thinking for solution to increase food production for per area. The global demand for food will increase for at least another 40 years cause of continuing population and consumption growth. Incrasing competition for land, water, and energy, and the overexploitation of fisheries, will affect our ability to produce food, as will the urgent requirement to reduce the impact of the food system on the environment. (Godfray et al 2010).

The sustained growth of the world’s population in the coming years requires a greater role for agriculture to meet the food needs of humankind. It is necessary to develop new and affordable sensor technologies for agricultural operations. This type of innovation should be implemented in the context of the consideration of the farm, the crops and the surrounding areas, with a view to providing farmers with the information to make better decisions to boost production To improve the productivity and competitiveness of the agro-industry, (Rosell-Polo et al 2015)

Soilless plants fall in to two primary classes: 1. Liquid Culture where nutrient solution is recirculat-
ed after re-aeration (true hydroponics) 2. Aggregate Culture where the nutrient solution is supplied to plants via an irrigation system through the media, and excess solution allowed to run to waste or the solution is recirculated (e.g. perlite, Rockwool, pumice, sand culture, gravel culture etc.). A number of media (called artificial media or mixtures) have been used as substrates for soilless culture (Olympios, 1992).

Vertical farming systems (VFS) have been proposed as an engineering solution to increase productivity per unit area of cultivated land by extending crop production into the vertical dimension (Touliatos et al. 2016).

Selecting the best substrate between the various materials is necessary to plant productivity; different substrates have several materials which could have direct or indirect effects on plant development and growth. (Ghehsareh et al. 2012).

Moisture sensors are particularly suitable for irrigation management in greenhouse soilless production. Identifying the practical effects of substrate water content set-points on crop performance is decisive for successful sensor-based irrigation (Montesano et al. 2018).

Building a smart irrigation system using Arduino (a microcontroller) and many devices (humidity, temperature, pressure and water flow sensors, to perform better irrigation systems by increasing the precision of measurements but also by automating decisions (Casado et al. 2018).

The aim of this research is to study:

1. The effect of using soil moisture sensor on controlling the water consumption for lettuce.
2. Increase productivity of lettuce per area and unit by using the vertical system and closed system to control the addition of nutrient solutions.

MATERIAL AND METHODS

Eighteen columns (1.5 meters height) were installed and providing by water source through a small open conduct (120 cm length & 20cm width). Three underground poly phenyl ethylene solution tank. The tank volume is 100 liters filled by nutrient solution, each tank was connected to water pump (HQB-3500 Type)

![Fig. 1. The automatic vertical closed irrigation system](image-url)
The pots were placed in the form of columns supported by a sloping and combined water conduct which is connected to the nutrient solution tank; the pots were filled with the non-organic medium-to-soft perlite substrate, so that aeration and soft spaces were available for long-term nutrient retention and the moisture-sensor readability of moisture readings. The whole system volume was 200 liters of perlite, where the volume of single pot 2 liters of perlite substrate.

1. (Fig.2) Soil moisture sensors

Three soil moisture sensors were used one for each treatment. The sensor consists of two electrodes working as poles to read the value of the soil moisture content by reading the inverse of the electrical resistance. Sensors have been installed in each pot at a depth of about 5 centimeters in contact with the perlite substrate to estimate the value of the moisture content in the perlite.

The sensor has been programmed to operate and shut off the pump at the three selected different soil moisture content, T1 60%, T2 80% and T3 100%.

The water consumption of the lettuce was measured in the three treatments by using the volume of the nutrient solution tank.

2. Irrigation

Drip irrigation was used in the system two micro-drip tube supply water to each column, one at the top of the column and the second in the middle. Below every Styrofoam pot 4 holes for the nutritious solution closed cycle.

Each irrigation treatment has a special moisture sensor which was connected to the controller of its water pump inside the solution tank.

3. Agricultural shade nets cover

Agricultural shade nets was used to protect the plants from cold and wind, block insects and prevent spread of disease, and overheating; 200 microns thickness White on black Plastic mulch films was used to cover the water conduct.

Daily measurements were made of pH (pH meter) and EC (portable conductivity meter) in the nutrient solution tank, pH and conductivity are analyzed on laboratory, and the nutrient solution concentration is adjusted manually.

4. Lettuce planting

In the lab of the (ALARI), the red lettuce and green lettuce plants (the vegetative growth and the roots.) were weighted and dried in an oven at 70°C for 48 to 72 hour until weights reached constant value then the dried plants were weighed and the dry weight per plant was calculated.

The lettuce seedlings was planted at October 13, 2016 and harvested at November 28, 2016, growth period. The total water consumption during the 47 days the growth period was measured and calculated for the three soil moisture content treatments T1, T2&T3.

5. Calculation of water consumption

Automatic water supply tanks were individually mounted for each plot using a PVC pipe of 200 mm of diameter. This system permits the automatic water inflow to the nutrient solution reservoir by means of a ball-cock valve, keeping a constant volume. Supply tank was equipped with a ruler set up to the side of a transparent micro-tube that allows for the calculation of water consumed pre plant.

\[
V_{\text{eff}} = \frac{(L_f - L_i) \times \pi \times D^2}{4 \times n \times \Delta T}
\]
Where: VETC = water consumption, m3 plant$^{-1}$ day$^{-1}$; Lf = current height of water in the tank, m; Li = initial height of water in the tank, m; D = reservoir internal diameter, m; ΔT = time interval between the measurements, day; n = number of plants per gully (Soares et al 2018).

1. Water quantities

We used this method for calculate water consumption by Noted the height of water in the tank solutions, as Fig. (4) shows T1 water consumption/ season was 556.5 liters & T2 was 697.5 liters and T3 consumed 908.5 liters of water / season

![Fig. 4. Total amount of water consumed](image)

2. Yield fresh weight per plant

In this table shows two indicators of growth for the case of lettuce the first indicator is vegetative growth and this is the part of the upper vegetative part of which the efficiency of water consumption is calculated.

The second indicator is the sum of the vegetative portion and the fresh roots in grams and this indicator is used to calculate productivity in the area unit

Table 1. Productivity of green and red lettuce under three treatments

<table>
<thead>
<tr>
<th>Treatments</th>
<th>T(1) (60%)</th>
<th>T(2) (80%)</th>
<th>T(3) (100%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green Lettuce</td>
<td>556.5</td>
<td>697.5</td>
<td>908.5</td>
</tr>
<tr>
<td>Red Lettuce</td>
<td>60</td>
<td>80</td>
<td>100</td>
</tr>
<tr>
<td>Vegetative growth (kg)</td>
<td>8.197</td>
<td>9.33</td>
<td>9.68</td>
</tr>
<tr>
<td>Total growth (kg)</td>
<td>11.243</td>
<td>13.421</td>
<td>14.07</td>
</tr>
<tr>
<td>Water use Efficiency (kg/m2)</td>
<td>31.499</td>
<td>26.759</td>
<td>21.521</td>
</tr>
</tbody>
</table>

3. Yield per meter square

The treatment area was about 1.5 m2. and the best treatment was the T (2) at 80% water content 17.6 kg/m2 productivity-T(1) at 60% was 16.44 kg/m2 and the less productive was T (3) at 100% water content 13.96 kg / m2, which is due to the fact that the percentage of the water content of the perlite substrate reflects the absence of air spaces

The observation in this treatment is that the weakness is weak and there is a elongation of lettuce leaves and the number of lettuce leaves was few.

From table.1 the total growth of both the production of red and green lettuce was calculated and the results were given that the treatment (1) was 24.66 kg productivity and the treatment (2)
was 26.40 kg and the treatment (3) was given the less production which it was 20.93 kg.

Table 2. Productivity for area

<table>
<thead>
<tr>
<th></th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
</tr>
</thead>
<tbody>
<tr>
<td>total growth (kg)</td>
<td>24.66</td>
<td>26.40</td>
<td>20.93</td>
</tr>
<tr>
<td>Productivity/area (kg/m2)</td>
<td>16.44</td>
<td>17.6</td>
<td>13.96</td>
</tr>
</tbody>
</table>

4. Water use efficiency for each treatment (Fig. 5)

The best treatment was the T1 where it achieved the highest efficiency for water use 31.5 g/L and comes in second place T 2 where the efficiency of water use 26.75 g/L and finally the treatment 3 achieved 21.52 g/L.

Fig. 5. Water use efficiency for three treatments

REFERENCE

المؤتمر الرابع عشر لبحوث التنمية الزراعية، كلية الزراعة، جامعة عين شمس، مارس 2019، القاهرة، مصر
مجلد (27)، عدد (1)، عدد خاص مارس، 77 – 82، 2019
Website: http://strategy-plan.asu.edu.eg/AUJASCI/

الري الأتمتاتي بمستشعرات الرطوبة للتربة في النظام الرأسي لإنتاج الخس

آية خليل مصطفى1- أسامة أحمد الباجي2- خالد فاروق الباجي1
1-قسم الهندسة الزراعية- كلية الزراعة- جامعة عين شمس- مصر
2-قسم البستأن- كلية الزراعة- جامعة عين شمس- مصر

الموجز

أقيمت التجربة في مقبرة الدراسات العليا للأراضي القاحلة- جامعة عين شمس. تم استخدام مستشعرات الرطوبة للتربة في محاكاة الري الرأسي في نظام التحريض الفرعي. تم قياس النمو والانتاج النباتي معفرة في جميع المحتمات، حيث أظهرت نتائج التجربة أن استخدام مستشعرات الرطوبة في نظام التحريض الفرعي يحسن من النمو والانتاج النباتي، وتحقيق نتائج أفضل من استخدام الري التقليدي.

Received 15 September, 2018, Accepted 18 September, 2018

الكلمات الدالة: نغمة زراعية، زراعة بدون تربة، بيئة البرليت، مستشعرات الرطوبة للتربة، أنظمة رأسي للزراعة المائية

*Corresponding author: ayya_khalil@yahoo.com

(Barbosa et al., 2015)